Heim >Backend-Entwicklung >Python-Tutorial >Python + Wordcloud lernen, in zehn Minuten englische Wortwolken zu erstellen
Wordcloud generiert auf Basis von Python
Wortwolke war in den letzten zwei Jahren ein heißes Thema, wenn Sie die Geduld haben, 10 Minuten zum Lesen aufzuwenden In diesem Artikel müssen Sie vielleicht diejenigen nicht mehr beneiden, die Wortwolke beherrschen. Es ist keine Raketenwissenschaft, Sie können es auch lernen. Kommen Sie und probieren Sie es aus!
In diesem Artikel erklären wir, wie man eine englische Wortwolke erstellt. In der nächsten Ausgabe zeigen wir Ihnen, wie man eine chinesische Wortwolke erstellt. Bitte bleiben Sie dran!
Wortwolke schnell erstellen
from wordcloud import WordCloud f = open(u'txt/AliceEN.txt','r').read() wordcloud = WordCloud(background_color="white",width=1000, height=860, margin=2).generate(f) # width,height,margin可以设置图片属性 # generate 可以对全部文本进行自动分词,但是他对中文支持不好,对中文的分词处理请看我的下一篇文章 #wordcloud = WordCloud(font_path = r'D:\Fonts\simkai.ttf').generate(f) # 你可以通过font_path参数来设置字体集 #background_color参数为设置背景颜色,默认颜色为黑色 import matplotlib.pyplot as plt plt.imshow(wordcloud) plt.axis("off") plt.show() wordcloud.to_file('test.png')
# Speichern Sie das Bild, aber im Beispiel des dritten Moduls wird die Bildgröße entsprechend der Maske gespeichert
Benutzerdefinierte Schriftfarbe
Dieser Code stammt hauptsächlich von Wordclouds Github, Sie können das Beispiel in Github herunterladen
#!/usr/bin/env python """ Colored by Group Example ======================== Generating a word cloud that assigns colors to words based on a predefined mapping from colors to words """ from wordcloud import (WordCloud, get_single_color_func) import matplotlib.pyplot as plt class SimpleGroupedColorFunc(object): """Create a color function object which assigns EXACT colors to certain words based on the color to words mapping Parameters ---------- color_to_words : dict(str -> list(str)) A dictionary that maps a color to the list of words. default_color : str Color that will be assigned to a word that's not a member of any value from color_to_words. """ def __init__(self, color_to_words, default_color): self.word_to_color = {word: color for (color, words) in color_to_words.items() for word in words} self.default_color = default_color def __call__(self, word, **kwargs): return self.word_to_color.get(word, self.default_color) class GroupedColorFunc(object): """Create a color function object which assigns DIFFERENT SHADES of specified colors to certain words based on the color to words mapping. Uses wordcloud.get_single_color_func Parameters ---------- color_to_words : dict(str -> list(str)) A dictionary that maps a color to the list of words. default_color : str Color that will be assigned to a word that's not a member of any value from color_to_words. """ def __init__(self, color_to_words, default_color): self.color_func_to_words = [ (get_single_color_func(color), set(words)) for (color, words) in color_to_words.items()] self.default_color_func = get_single_color_func(default_color) def get_color_func(self, word): """Returns a single_color_func associated with the word""" try: color_func = next( color_func for (color_func, words) in self.color_func_to_words if word in words) except StopIteration: color_func = self.default_color_func return color_func def __call__(self, word, **kwargs): return self.get_color_func(word)(word, **kwargs) text = """The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those!""" # Since the text is small collocations are turned off and text is lower-cased wc = WordCloud(collocations=False).generate(text.lower()) # 自定义所有单词的颜色 color_to_words = { # words below will be colored with a green single color function '#00ff00': ['beautiful', 'explicit', 'simple', 'sparse', 'readability', 'rules', 'practicality', 'explicitly', 'one', 'now', 'easy', 'obvious', 'better'], # will be colored with a red single color function 'red': ['ugly', 'implicit', 'complex', 'complicated', 'nested', 'dense', 'special', 'errors', 'silently', 'ambiguity', 'guess', 'hard'] } # Words that are not in any of the color_to_words values # will be colored with a grey single color function default_color = 'grey' # Create a color function with single tone # grouped_color_func = SimpleGroupedColorFunc(color_to_words, default_color) # Create a color function with multiple tones grouped_color_func = GroupedColorFunc(color_to_words, default_color) # Apply our color function # 如果你也可以将color_func的参数设置为图片,详细的说明请看 下一部分 wc.recolor(color_func=grouped_color_func) # Plot plt.figure() plt.imshow(wc, interpolation="bilinear") plt.axis("off") plt.show()
Verwenden Sie das Hintergrundbild, um eine Wortwolke zu erstellen und einen Stoppwortsatz festzulegen
Dieser Absatz stammt hauptsächlich von Wordclouds Github. Sie können das Beispiel und die Originalbilder und Renderings auch auf Github herunterladen.
#!/usr/bin/env python """ Image-colored wordcloud ======================= You can color a word-cloud by using an image-based coloring strategy implemented in ImageColorGenerator. It uses the average color of the region occupied by the word in a source image. You can combine this with masking - pure-white will be interpreted as 'don't occupy' by the WordCloud object when passed as mask. If you want white as a legal color, you can just pass a different image to "mask", but make sure the image shapes line up. """ from os import path from PIL import Image import numpy as np import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator d = path.dirname(__file__) # Read the whole text. text = open(path.join(d, 'alice.txt')).read() # read the mask / color image taken from # http://jirkavinse.deviantart.com/art/quot-Real-Life-quot-Alice-282261010 alice_coloring = np.array(Image.open(path.join(d, "alice_color.png"))) # 设置停用词 stopwords = set(STOPWORDS) stopwords.add("said") # 你可以通过 mask 参数 来设置词云形状 wc = WordCloud(background_color="white", max_words=2000, mask=alice_coloring, stopwords=stopwords, max_font_size=40, random_state=42) # generate word cloud wc.generate(text) # create coloring from image image_colors = ImageColorGenerator(alice_coloring) # show # 在只设置mask的情况下,你将会得到一个拥有图片形状的词云 plt.imshow(wc, interpolation="bilinear") plt.axis("off") plt.figure() # recolor wordcloud and show # we could also give color_func=image_colors directly in the constructor # 我们还可以直接在构造函数中直接给颜色 # 通过这种方式词云将会按照给定的图片颜色布局生成字体颜色策略 plt.imshow(wc.recolor(color_func=image_colors), interpolation="bilinear") plt.axis("off") plt.figure() plt.imshow(alice_coloring, cmap=plt.cm.gray, interpolation="bilinear") plt.axis("off") plt.show()
Der Anzeigeeffekt ist wie folgt:
Das obige ist der detaillierte Inhalt vonPython + Wordcloud lernen, in zehn Minuten englische Wortwolken zu erstellen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!