Heim  >  Artikel  >  Backend-Entwicklung  >  Kann Python eine Regression durchführen?

Kann Python eine Regression durchführen?

little bottle
little bottleOriginal
2019-05-22 10:04:102799Durchsuche

Python kann eine lineare Regression implementieren: 1. Rufen Sie linear_model in der scikit-learn-Bibliothek auf. 2. Verwenden Sie Scipy.polyfit() oder numpy.polyfit(); hochprofessionell Die lineare Regressionsfunktion Stats.linregress().

Kann Python eine Regression durchführen?

Lineare Regression ist ein altbewährtes Modell in der Data-Science-Community. Es ist fast ein obligatorischer Einführungskurs für alle Datenwissenschaftler. Können Sie die lineare Regression wirklich effizient anwenden, wenn Sie die Modellanalyse und das Testen großer Datenmengen beiseite lassen? Im Folgenden werde ich Ihnen verschiedene Möglichkeiten zur Implementierung der Regression in Python vorstellen.

Methode 1: Rufen Sie linear_model aus der scikit-learn-Bibliothek auf

Aufgrund der weit verbreiteten Beliebtheit der maschinellen Lernbibliothek scikit-learn besteht eine gängige Methode darin, linear_model aufzurufen Passen Sie die Daten an.

Dies kann zwar weitere Vorteile anderer Pipeline-Funktionen des maschinellen Lernens bieten (z. B. Datennormalisierung, Modellkoeffizienten-Regularisierung, Übergabe eines linearen Modells an ein anderes Downstream-Modell), wenn ein Datenanalyst dies jedoch benötigt, ist dies normalerweise nicht der schnellste Weg und einfachste Möglichkeit, Regressionskoeffizienten (und einige grundlegende zugehörige Statistiken) schnell und einfach zu bestimmen.

Methode 2: Scipy.polyfit( ) oder numpy.polyfit( )

Dies ist die grundlegendste Polynomanpassungsfunktion der kleinsten Quadrate (Polynomanpassungsfunktion der kleinsten Quadrate). akzeptiert einen Datensatz und eine Polynomfunktion beliebiger Dimension (vom Benutzer angegeben) und gibt einen Satz Koeffizienten zurück, der den quadratischen Fehler minimiert.

Für eine einfache lineare Regression können Sie eine eindimensionale Funktion wählen. Wenn Sie jedoch ein höherdimensionales Modell anpassen möchten, können Sie Polynommerkmale aus den linearen Merkmalsdaten erstellen und das Modell anpassen.

Methode 3: Stats.linregress( )

Dies ist eine hochspezialisierte lineare Regressionsfunktion, die im Statistikmodul von SciPy zu finden ist. Da es jedoch nur zur Optimierung der Regression der kleinsten Quadrate zweier Messdatensätze verwendet wird, ist seine Flexibilität recht begrenzt. Daher können Sie es nicht für verallgemeinerte lineare Modelle und multiple Regressionsanpassungen verwenden.

Aufgrund seiner Spezifität ist es jedoch eine der schnellsten Methoden in der einfachen linearen Regression. Zusätzlich zu den angepassten Koeffizienten und Intercept-Termen werden auch grundlegende Statistiken wie der R2-Koeffizient und die Standardabweichung zurückgegeben.

Das obige ist der detaillierte Inhalt vonKann Python eine Regression durchführen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn