Dieser Artikel bietet Ihnen eine Einführung in die Verwendung von * in Python (Codebeispiele). Ich hoffe, dass er Ihnen als Referenz dienen wird.
1. Stellt Multiplikationsoperationen dar
2. Stellt Vielfache dar
def T(msg,time=1): print((msg+' ')*time) T('hi',3)
Ergebnis: hi hi hi
3. Single *
3.1 Die formale Parameterposition
*parameter, die in der Funktionsdefinition erscheint, wird verwendet, um eine beliebige Anzahl von Parametern zu akzeptieren und sie in ein Tupel einzufügen.
def demo(*p): print(p) demo(1,2,3)
Ergebnis: (1, 2, 3)
3.2 Erscheint an der tatsächlichen Parameterposition des Funktionsaufrufs
Wenn die Funktion mehrere Parameter aufruft, erscheint sie in der list und tuple , Sammlungen, Wörterbücher und andere iterierbare Objekte als tatsächliche Parameter und fügen Sie * vor, der Interpreter wird automatisch entpackt und an mehrere Einzelvariablenparameter übergeben (die Anzahl der analysierten Parameter muss der Anzahl der Funktionsparameter entsprechen). .
a=[1,2,3] d(*a)
Ergebnis: 1 2 3
4. Zwei ** erscheinen im formalen Parameterteil der Funktionsdefinition
wie zum Beispiel: **Parameter wird zum Empfangen von Schlüsseln verwendet Ähnlich wie: Fügen Sie mehrere tatsächliche Parameter in derselben Zuweisungsform wie Parameter in das Wörterbuch ein (dh konvertieren Sie die Parameter der Funktion in ein Wörterbuch).
def demo(**p): for i in p.items(): print(i) demo(x=1,y=2)
Ergebnis: ('x', 1) ('y', 2)
Das obige ist der detaillierte Inhalt vonEinführung in die Verwendung von * in Python (Codebeispiel). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Inpython, youAppendElementStoAlistusedtheAppend () Methode.1) UseAppend () ForsingleElelements: my_list.append (4) .2) usextend () oder = formulnElements: my_list.extend (andere_list) ormy_list = [4,5,6] .3) useInSert () FORSPECIFIFICISPositionen: my_list.insert (1,5) .Beaware

Zu den Methoden zum Debuggen des Shebang -Problems gehören: 1.. Überprüfen Sie die SHEBANG -Zeile, um sicherzustellen, dass es sich um die erste Zeile des Skripts handelt, und es gibt keine vorangestellten Räume. 2. Überprüfen Sie, ob der Dolmetscherpfad korrekt ist; 3. Rufen Sie den Dolmetscher direkt an, um das Skript auszuführen, um das Problem der Shebang zu isolieren. 4. Verwenden Sie Strace oder Trusts, um die Systemaufrufe zu verfolgen. 5. Überprüfen Sie die Auswirkungen von Umgebungsvariablen auf Shebang.

PythonlistscanbemanipuleduseveralmethodstoremoveElements: 1) theremove () methodremoveFirstoccurce -ofaspecifiedValue.2) thepop () methodremovesandreturnsanelementatagivedEx.3) theedelstatementcanremoveMeMeMeMeTex.

PythonlistscanstoreanyDatatype, einschließlich Integren, Streicher, Schwimmkörper, Booleans, anderen Listen und Dotionen. ThisverSatilityAllows-Formixed-Typen, die kanbemännische EffectivantivinyusingTypecks, TypenHints und spezialisierte LikenumpyForperformance

PythonlistsSupportnumousoperationen: 1) AddelementsWithAppend (), Extend (), andInsert (). 2) REMVERGENDEMODESUSUSUSSUMOVER (), POP () und Clear (). 3) Accessing undModifyingWithindexingandSlicing.4) SearchingandSortingWithindEx (), Sorte (), und Sortex ()

Durch die folgenden Schritte können mehrdimensionale Arrays mit Numpy erstellt werden: 1) Verwenden Sie die Funktion numpy.array (), um ein Array wie NP.Array ([1,2,3], [4,5,6]) zu erstellen, um ein 2D-Array zu erstellen; 2) Verwenden Sie np.zeros (), np.ones (), np.random.random () und andere Funktionen, um ein Array zu erstellen, das mit spezifischen Werten gefüllt ist; 3) Verstehen Sie die Form- und Größeneigenschaften des Arrays, um sicherzustellen, dass die Länge des Unterarrays konsistent ist und Fehler vermeiden. 4) Verwenden Sie die Funktion np.reshape (), um die Form des Arrays zu ändern. 5) Achten Sie auf die Speichernutzung, um sicherzustellen, dass der Code klar und effizient ist.

SendeminnumpyissamethodtoperformoperationsonarraysofdifferentShapesByAutomaticaligningTHem.itsimplifiesCode, Verbesserung der Verschiebbarkeit, und BoostSPerformance.her'Showitworks: 1) kleinereArraysArepaddedwithonestOMatchDimens.2) compatibledimens

Forpythondatastorage, ChooselistsforflexibilitätswithmixedDatatypes, Array.Arrayformemory-effizientesHomogenoususnumericalData und NumpyArraysForAdvancedNumericalComputing.ListsareversAntileffictionForLarGenicalDataSetsetaSets;


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools
