Heim >Datenbank >MySQL-Tutorial >So implementieren Sie Python3, um den gleichzeitigen Zugriff auf horizontal geteilte Tabellen zu implementieren
Der Inhalt dieses Artikels befasst sich mit der Implementierung von Python3, um den gleichzeitigen Zugriff auf horizontal geteilte Tabellen zu erreichen. Ich hoffe, dass er für Sie hilfreich ist.
Angenommen, eine MySQL-Tabelle wird horizontal aufgeteilt und auf mehrere Hosts verteilt. Jeder Host verfügt über n geteilte Tabellen.
Was sollten Sie tun, wenn Sie gleichzeitig auf diese Tabellen zugreifen und schnell Abfrageergebnisse erhalten müssen?
Hier ist eine Lösung, die die asynchrone asynchrone IO-Bibliothek asyncio und die asynchrone aiomysql-Bibliothek von Python3 verwendet, um diese Anforderung zu erfüllen.
import logging import random import asynciofrom aiomysql import create_pool # 假设mysql表分散在8个host, 每个host有16张子表 TBLES = { "192.168.1.01": "table_000-015", # 000-015表示该ip下的表明从table_000一直连续到table_015 "192.168.1.02": "table_016-031", "192.168.1.03": "table_032-047", "192.168.1.04": "table_048-063", "192.168.1.05": "table_064-079", "192.168.1.06": "table_080-095", "192.168.1.07": "table_096-0111", "192.168.1.08": "table_112-0127", } USER = "xxx"PASSWD = "xxxx"# wrapper函数,用于捕捉异常def query_wrapper(func): async def wrapper(*args, **kwargs): try: await func(*args, **kwargs) except Exception as e: print(e) return wrapper # 实际的sql访问处理函数,通过aiomysql实现异步非阻塞请求@ query_wrapperasync def query_do_something(ip, db, table): async with create_pool(host=ip, db=db, user=USER, password=PASSWD) as pool: async with pool.get() as conn: async with conn.cursor() as cur: sql = ("select xxx from {} where xxxx") await cur.execute(sql.format(table)) res = await cur.fetchall() # then do something...# 生成sql访问队列, 队列的每个元素包含要对某个表进行访问的函数及参数def gen_tasks(): tasks = [] for ip, tbls in TBLES.items(): cols = re.split('_|-', tbls) tblpre = "_".join(cols[:-2]) min_num = int(cols[-2]) max_num = int(cols[-1]) for num in range(min_num, max_num+1): tasks.append( (query_do_something, ip, 'your_dbname', '{}_{}'.format(tblpre, num)) ) random.shuffle(tasks) return tasks# 按批量运行sql访问请求队列def run_tasks(tasks, batch_len): try: for idx in range(0, len(tasks), batch_len): batch_tasks = tasks[idx:idx+batch_len] logging.info("current batch, start_idx:%s len:%s" % (idx, len(batch_tasks))) for i in range(0, len(batch_tasks)): l = batch_tasks[i] batch_tasks[i] = asyncio.ensure_future( l[0](*l[1:]) ) loop.run_until_complete(asyncio.gather(*batch_tasks)) except Exception as e: logging.warn(e)# main方法, 通过asyncio实现函数异步调用def main(): loop = asyncio.get_event_loop() tasks = gen_tasks() batch_len = len(TBLES.keys()) * 5 # all up to you run_tasks(tasks, batch_len) loop.close()
Das obige ist der detaillierte Inhalt vonSo implementieren Sie Python3, um den gleichzeitigen Zugriff auf horizontal geteilte Tabellen zu implementieren. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!