


Der Inhalt dieses Artikels ist eine detaillierte Einführung (Codebeispiel) über Multiprozesse in Python. Ich hoffe, dass er für Sie hilfreich ist.
In diesem Abschnitt geht es um das Erlernen des Multiprozesses von Python.
1. Vergleich zwischen Multiprozess und Multithreading
Multiprozess Multiprocessing
Sie werden beide für 并行
Operationen in Python verwendet Warum gibt es Threading? Der Grund dafür ist ganz einfach: Es dient dazu, einige Nachteile des Threadings auszugleichen, wie im Threading-Tutorial erwähnt.GIL
import multiprocessing as mp
import threading as td
def job(a,d):
print('aaaaa')
t1 = td.Thread(target=job,args=(1,2))
p1 = mp.Process(target=job,args=(1,2))
t1.start()
p1.start()
t1.join()
p1.join()
Wie aus dem obigen Verwendungsvergleichscode ersichtlich ist, werden Threads und Prozesse auf ähnliche Weise verwendet. Bei Verwendung von müssen Sie eine Anweisung hinzufügen, die die Hauptfunktion definiert
if __name__=='__main__':Vollständiger Anwendungscode:
# -*- coding:utf-8 -*- """ @author: Corwien @file: process_test.py @time: 18/8/26 01:12 """ import multiprocessing as mp def job(a, d): print a, d if __name__ == '__main__': p1 = mp.Process(target=job, args=(1, 2)) p1.start() p1.join()Die laufende Umgebung muss sich im Terminal befinden Umgebung Als nächstes haben andere Bearbeitungstools nach der Ausführung möglicherweise kein gedrucktes Ergebnis. Das gedruckte Ergebnis nach der Ausführung im Terminal lautet:
➜ baseLearn python ./process/process_test.py 1 2 ➜ baseLearn3. Gespeicherte ProzessausgabewarteschlangeDie Funktion der Warteschlange lautet Laden Sie die Operationsergebnisse jedes Kerns oder Threads in der Warteschlange herunter, warten Sie, bis die Ausführung jedes Threads oder Kerns abgeschlossen ist, nehmen Sie dann die Ergebnisse aus der Warteschlange und fahren Sie mit dem Laden der Operation fort. Der Grund ist sehr einfach. Von mehreren Threads aufgerufene Funktionen können keinen Rückgabewert haben, daher wird die Warteschlange zum Speichern der Ergebnisse mehrerer Thread-Operationen verwendet
process_queue.py
# -*- coding:utf-8 -*- """ @author: Corwien @file: process_queue.py @time: 18/8/26 01:12 """ import multiprocessing as mp # 定义一个被多线程调用的函数,q 就像一个队列,用来保存每次函数运行的结果 def job(q): res = 0 for i in range(1000): res += i + i**2 + i**3 q.put(res) #queue if __name__ == '__main__': q = mp.Queue() p1 = mp.Process(target=job, args=(q,)) p2 = mp.Process(target=job, args=(q,)) # 分别启动、连接两个线程 p1.start() p2.start() p1.join() p2.join() # 上面是分两批处理的,所以这里分两批输出,将结果分别保存 res1 = q.get() res2 = q.get() print res1,res2Ausgabeergebnis ausgeben:
➜ python ./process/process_queue.py 249833583000 2498335830004. Prozesspool
bedeutet, dass wir die Dinge, die wir ausführen möchten, in den Pool legen, 进程池
. Python会自行解决多进程的问题
und definieren Sie import multiprocessing
job()
import multiprocessing as mp def job(x): return x*x2
Dann definieren wir ein
pool = mp.Pool()
Pool
Nachdem wir einen Pool haben, können wir dafür sorgen, dass der Pool einer bestimmten Funktion entspricht. Wir werfen Daten in den Pool und der Pool gibt den von zurückgegebenen Wert zurück die Funktion. Der Unterschied zwischen und dem vorherigen besteht darin, dass die von Pool
in den Pool geworfene Funktion einen Rückgabewert Process的
hat, während das von keinen Rückgabewert Process
hat . Als nächstes verwenden Sie
müssen Sie die Funktion und den Wert eingeben, der iteriert werden muss. Anschließend wird er automatisch dem CPU-Kern zugewiesen und das Ergebnis wird zurückgegeben. map()
res = pool.map(job, range(10))
map()
Lassen Sie uns def multicore(): pool = mp.Pool() res = pool.map(job, range(10)) print(res) if __name__ == '__main__': multicore()
ausführen, um den Code zu vervollständigen:
# -*- coding:utf-8 -*- """ @author: Corwien @file: process_queue.py @time: 18/8/26 01:12 """ import multiprocessing as mp def job(x): return x*x # 注意这里的函数有return返回值 def multicore(): pool = mp.Pool() res = pool.map(job, range(10)) print(res) if __name__ == '__main__': multicore()
Benutzerdefinierte Anzahl von Kernen
Woher wissen wir, ob
tatsächlich mehrere Kerne aufgerufen werden? Wir können die Anzahl der Iterationen erhöhen und dann die CPU-Auslastung öffnen, um den CPU-Betrieb zu sehenCPU-Auslastung öffnen (Mac): Aktivitätsmonitor>CPU>CPU-Auslastung (ein Klick)Pool
Die Standardgröße des Pools ist die Anzahl der Kerne der CPU. Wir können die erforderliche Anzahl von Kernen auch anpassen, indem wir den Parameter
➜ baseLearn python ./process/process_pool.py [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]4 übergeben >
Pool
Zusätzlich zu processes
gibt es eine andere Möglichkeit, Ergebnisse zurückzugeben, nämlich
In Pool
kann map()
nur einen Wert übergeben , es wird nur ein Kern für die Eingabe eingegeben, aber wenn Sie den Wert übergeben, beachten Sie bitte, dass er iterierbar ist. Sie müssen also nach dem eingehenden Wert ein Komma hinzufügen und die Methode get () verwenden, um den Wert zu erhalten Rückgabewert apply_async()
def multicore(): pool = mp.Pool(processes=3) # 定义CPU核数量为3 res = pool.map(job, range(10)) print(res)
laufendes Ergebnis ;apply_async()
def multicore(): pool = mp.Pool() res = pool.map(job, range(10)) print(res) res = pool.apply_async(job, (2,)) # 用get获得结果 print(res.get())Zusammenfassung
Der Standardaufruf ist die Anzahl der übergebenen CPU-Kerne Der Prozessparameter kann die Anzahl der CPU-Kerne anpassen
Pool
Geben Sie Iterationsparameter ein und geben Sie mehrere Ergebnisse zurückmap()
Das ist möglich Geben Sie nur einen Parametersatz ein und geben Sie ein Ergebnis zurück. Wenn Sie map() erhalten möchten, muss der Effekt durch-
5. Shared Memory Shared Memory
.apply_async()
In diesem Abschnitt lernen wir, wie man Shared Memory definiert.
können wir die Daten in einer Shared-Memory-Tabelle speichern. 只有用共享内存才能让CPU之间有交流
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81] # map() 4 # apply_async()Die Parameter
und
werden zum Festlegen des Datentyps verwendet. stellt einen Gleitkommatyp mit doppelter Genauigkeit dar, und Value
stellt einen vorzeichenbehafteten
Type code | C Type | Python Type | Minimum size in bytes |
---|---|---|---|
'b' |
signed char | int | 1 |
'B' |
unsigned char | int | 1 |
'u' |
Py_UNICODE | Unicode character | 2 |
'h' |
signed short | int | 2 |
'H' |
unsigned short | int | 2 |
'i' |
signed int | int | 2 |
'I' |
unsigned int | int | 2 |
'l' |
signed long | int | 4 |
'L' |
unsigned long | int | 4 |
'q' |
signed long long | int | 8 |
'Q' |
unsigned long long | int | 8 |
'f' |
float | float | 4 |
'd' |
double | float | 8 |
Shared Array
在Python的 mutiprocessing
中,有还有一个Array
类,可以和共享内存交互,来实现在进程之间共享数据。
array = mp.Array('i', [1, 2, 3, 4])
这里的Array
和numpy中的不同,它只能是一维
的,不能是多维的。同样和Value
一样,需要定义数据形式,否则会报错。 我们会在后一节举例说明这两种的使用方法.
错误形式
array = mp.Array('i', [[1, 2], [3, 4]]) # 2维list """ TypeError: an integer is required """
六、进程锁Lock
不加进程锁
让我们看看没有加进程锁时会产生什么样的结果。
# -*- coding:utf-8 -*- """ @author: Corwien @file: process_no_lock.py @time: 18/8/26 09:22 """ import multiprocessing as mp import time def job(v, num): for _ in range(5): time.sleep(0.5) # 暂停0.5秒,让输出效果更明显 v.value += num # v.value获取共享变量值 print(v.value) def multicore(): v = mp.Value('i', 0) # 定义共享变量 p1 = mp.Process(target=job, args=(v, 1)) p2 = mp.Process(target=job, args=(v, 4)) # 设定不同的number看如何抢夺内存 p1.start() p2.start() p1.join() p2.join() if __name__ == '__main__': multicore()
在上面的代码中,我们定义了一个共享变量v
,两个进程都可以对它进行操作。 在job()中我们想让v
每隔0.1秒输出一次累加num
的结果,但是在两个进程p1
和p2
中设定了不同的累加值。所以接下来让我们来看下这两个进程是否会出现冲突。
结果打印:
➜ baseLearn python ./process/process_no_lock.py 1 5 9 9 13 13 17 17 18 18 ➜ baseLearn
我们可以看到,进程1和进程2在相互抢
着使用共享内存v
。
加进程锁
为了解决上述不同进程抢共享资源的问题,我们可以用加进程锁来解决。
首先需要定义一个进程锁
l = mp.Lock() # 定义一个进程锁
然后将进程锁的信息传入各个进程中
p1 = mp.Process(target=job, args=(v,1,l)) # 需要将Lock传入 p2 = mp.Process(target=job, args=(v,3,l))
在job()
中设置进程锁的使用,保证运行时一个进程的对锁内内容的独占
def job(v, num, l): l.acquire() # 锁住 for _ in range(5): time.sleep(0.1) v.value += num # v.value获取共享内存 print(v.value) l.release() # 释放
全部代码:
# -*- coding:utf-8 -*- """ @author: Corwien @file: process_lock.py @time: 18/8/26 09:22 """ import multiprocessing as mp import time def job(v, num, l): l.acquire() # 锁住 for _ in range(5): time.sleep(0.5) # 暂停0.5秒,让输出效果更明显 v.value += num # v.value获取共享变量值 print(v.value) l.release() # 释放 def multicore(): l = mp.Lock() # 定义一个进程锁 v = mp.Value('i', 0) # 定义共享变量 p1 = mp.Process(target=job, args=(v, 1, l)) # 需要将lock传入 p2 = mp.Process(target=job, args=(v, 4, l)) # 设定不同的number看如何抢夺内存 p1.start() p2.start() p1.join() p2.join() if __name__ == '__main__': multicore()
运行一下,让我们看看是否还会出现抢占资源的情况:
结果打印:
➜ baseLearn python ./process/process_lock.py 1 2 3 4 5 9 13 17 21 25
显然,进程锁保证了进程p1
的完整运行,然后才进行了进程p2
的运行
相关推荐:
Das obige ist der detaillierte Inhalt vonDetaillierte Einführung in Multiprozesse in Python (Codebeispiel). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Dreamweaver Mac
Visuelle Webentwicklungstools

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.