suchen
HeimBackend-EntwicklungPython-TutorialWas sind Generatoren in Python? Wofür werden Generatoren verwendet?

Im folgenden Artikel erfahren wir, was ein Generator in Python ist. Erfahren Sie, was ein Python-Generator ist und welche Rolle ein Generator bei der Python-Programmierung spielen kann.

Was ist ein Python-Generator?

Mit der Listengenerierung können wir direkt eine Liste erstellen. Aufgrund von Speicherbeschränkungen ist die Listenkapazität jedoch definitiv begrenzt. Darüber hinaus nimmt die Erstellung einer Liste mit 1 Million Elementen nicht nur viel Speicherplatz in Anspruch, sondern wenn wir nur auf die ersten paar Elemente zugreifen müssen, wird der von den meisten nachfolgenden Elementen belegte Platz verschwendet.

Wenn also die Listenelemente nach einem bestimmten Algorithmus berechnet werden können, können wir dann während der Schleife kontinuierlich nachfolgende Elemente berechnen? Auf diese Weise müssen Sie keine vollständige Liste erstellen und sparen viel Platz. In Python wird dieser Mechanismus zum gleichzeitigen Schleifen und Berechnen als Generator bezeichnet: Generator.

Um einen Generator zu erstellen, gibt es viele Möglichkeiten. Die erste Methode ist sehr einfach. Ändern Sie einfach das [] einer Listengenerierung in (), um einen Generator zu erstellen:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

Nachdem wir einen Generator erstellt haben, verwenden wir eine for-Schleife zum Iterieren darüber hinweg und müssen sich keine Sorgen über StopIteration-Fehler machen.

Generator ist sehr leistungsstark. Wenn der Berechnungsalgorithmus relativ komplex ist und nicht über eine for-Schleife ähnlich der Listengenerierung implementiert werden kann, kann er auch über eine Funktion implementiert werden.

Zum Beispiel kann in der berühmten Fibonacci-Folge mit Ausnahme der ersten und zweiten Zahl jede Zahl durch Addition der ersten beiden Zahlen erhalten werden:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return &#39;done&#39;

Beachten Sie, dass die Zuweisungsanweisung:

a, b = b, a + b

ist äquivalent zu:

t = (b, a + b) # t是一个tuplea = t[0]b = t[1]

, kann aber zugewiesen werden, ohne die temporäre Variable t explizit auszuschreiben.

Die obige Funktion kann die ersten N Zahlen der Fibonacci-Folge ausgeben:

>>> fib(6)112358&#39;done&#39;

Wenn Sie genau hinschauen, können Sie erkennen, dass die Fib-Funktion tatsächlich die Berechnung der Fibonacci-Folge definiert, mit der begonnen werden kann das erste Element und berechnet alle nachfolgenden Elemente. Diese Logik ist tatsächlich dem Generator sehr ähnlich.

Mit anderen Worten, die obige Funktion ist nur einen Schritt vom Generator entfernt. Um die fib-Funktion in einen Generator umzuwandeln, ändern Sie einfach print(b) in b:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:        yield b
        a, b = b, a + b
        n = n + 1
    return &#39;done&#39;

Dies ist eine weitere Möglichkeit, einen Generator zu definieren. Wenn eine Funktionsdefinition das Schlüsselwort yield enthält, ist die Funktion keine gewöhnliche Funktion mehr, sondern ein Generator:

>>> f = fib(6)
>>> f<generator object fib at 0x104feaaa0>

Hier ist es am schwierigsten zu verstehen, dass der Ausführungsablauf von Generator und Funktion unterschiedlich ist. Funktionen werden nacheinander ausgeführt und kehren zurück, wenn sie auf eine Return-Anweisung oder die letzte Zeile von Funktionsanweisungen stoßen. Die Funktion, die zum Generator wird, wird jedes Mal ausgeführt, wenn next() aufgerufen wird, kehrt zurück, wenn eine Yield-Anweisung auftritt, und setzt die Ausführung ab der Yield-Anweisung fort, die beim letzten Mal zurückgegeben wurde, wenn sie erneut ausgeführt wird.

Das Obige ist der gesamte Inhalt dieses Artikels. Ich hoffe, dass Sie die Informationen zum Verständnis des oben genannten Inhalts verwenden können. Ich hoffe, dass das, was ich in diesem Artikel beschrieben habe, für Sie hilfreich ist und Ihnen das Erlernen von Python erleichtert. Weitere Informationen zu diesem Thema finden Sie in der Spalte

Python-Tutorial

auf der chinesischen PHP-Website.

Das obige ist der detaillierte Inhalt vonWas sind Generatoren in Python? Wofür werden Generatoren verwendet?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Python vs. C: Verständnis der wichtigsten UnterschiedePython vs. C: Verständnis der wichtigsten UnterschiedeApr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Python vs. C: Welche Sprache für Ihr Projekt zu wählen?Python vs. C: Welche Sprache für Ihr Projekt zu wählen?Apr 21, 2025 am 12:17 AM

Die Auswahl von Python oder C hängt von den Projektanforderungen ab: 1) Wenn Sie eine schnelle Entwicklung, Datenverarbeitung und Prototypdesign benötigen, wählen Sie Python. 2) Wenn Sie eine hohe Leistung, eine geringe Latenz und eine schließende Hardwarekontrolle benötigen, wählen Sie C.

Erreichen Sie Ihre Python -Ziele: Die Kraft von 2 Stunden täglichErreichen Sie Ihre Python -Ziele: Die Kraft von 2 Stunden täglichApr 20, 2025 am 12:21 AM

Indem Sie täglich 2 Stunden Python -Lernen investieren, können Sie Ihre Programmierkenntnisse effektiv verbessern. 1. Lernen Sie neues Wissen: Lesen Sie Dokumente oder sehen Sie sich Tutorials an. 2. Üben: Schreiben Sie Code und vollständige Übungen. 3. Überprüfung: Konsolidieren Sie den Inhalt, den Sie gelernt haben. 4. Projektpraxis: Wenden Sie an, was Sie in den tatsächlichen Projekten gelernt haben. Ein solcher strukturierter Lernplan kann Ihnen helfen, Python systematisch zu meistern und Karriereziele zu erreichen.

Maximieren 2 Stunden: Effektive Strategien für Python -LernstrategienMaximieren 2 Stunden: Effektive Strategien für Python -LernstrategienApr 20, 2025 am 12:20 AM

Zu den Methoden zum effizienten Erlernen von Python innerhalb von zwei Stunden gehören: 1. Überprüfen Sie das Grundkenntnis und stellen Sie sicher, dass Sie mit der Python -Installation und der grundlegenden Syntax vertraut sind. 2. Verstehen Sie die Kernkonzepte von Python wie Variablen, Listen, Funktionen usw.; 3.. Master Basic und Advanced Nutzung unter Verwendung von Beispielen; 4.. Lernen Sie gemeinsame Fehler und Debugging -Techniken; 5. Wenden Sie Leistungsoptimierung und Best Practices an, z. B. die Verwendung von Listenfunktionen und dem Befolgen des Pep8 -Stilhandbuchs.

Wählen Sie zwischen Python und C: Die richtige Sprache für SieWählen Sie zwischen Python und C: Die richtige Sprache für SieApr 20, 2025 am 12:20 AM

Python ist für Anfänger und Datenwissenschaften geeignet und C für Systemprogramme und Spieleentwicklung geeignet. 1. Python ist einfach und einfach zu bedienen, geeignet für Datenwissenschaft und Webentwicklung. 2.C bietet eine hohe Leistung und Kontrolle, geeignet für Spieleentwicklung und Systemprogrammierung. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Python vs. C: Eine vergleichende Analyse von ProgrammiersprachenPython vs. C: Eine vergleichende Analyse von ProgrammiersprachenApr 20, 2025 am 12:14 AM

Python eignet sich besser für Datenwissenschaft und schnelle Entwicklung, während C besser für Hochleistungen und Systemprogramme geeignet ist. 1. Python -Syntax ist prägnant und leicht zu lernen, geeignet für die Datenverarbeitung und wissenschaftliches Computer. 2.C hat eine komplexe Syntax, aber eine hervorragende Leistung und wird häufig in der Spieleentwicklung und der Systemprogrammierung verwendet.

2 Stunden am Tag: Das Potenzial des Python -Lernens2 Stunden am Tag: Das Potenzial des Python -LernensApr 20, 2025 am 12:14 AM

Es ist machbar, zwei Stunden am Tag zu investieren, um Python zu lernen. 1. Lernen Sie neues Wissen: Lernen Sie in einer Stunde neue Konzepte wie Listen und Wörterbücher. 2. Praxis und Übung: Verwenden Sie eine Stunde, um Programmierübungen durchzuführen, z. B. kleine Programme. Durch vernünftige Planung und Ausdauer können Sie die Kernkonzepte von Python in kurzer Zeit beherrschen.

Python vs. C: Lernkurven und BenutzerfreundlichkeitPython vs. C: Lernkurven und BenutzerfreundlichkeitApr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

SublimeText3 Englische Version

SublimeText3 Englische Version

Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools

mPDF

mPDF

mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),