Heim  >  Artikel  >  Backend-Entwicklung  >  Analyse der Multitasking-Coroutine-Verarbeitung von PHP

Analyse der Multitasking-Coroutine-Verarbeitung von PHP

不言
不言Original
2018-07-17 10:20:131588Durchsuche

Dieser Artikel stellt hauptsächlich die Multitasking-Coroutine-Verarbeitung in PHP vor, die einen gewissen Referenzwert hat. Jetzt können Freunde in Not darauf verweisen.

Also, fangen wir an!

Analyse der Multitasking-Coroutine-Verarbeitung von PHP

Das werden wir in diesem Artikel besprechen. Aber wir beginnen mit einem einfacheren und bekannteren Beispiel.

Alles beginnt mit Arrays

Wir können Arrays durch einfaches Durchlaufen verwenden:

$array = ["foo", "bar", "baz"];
 
foreach ($array as $key => $value) {
    print "item: " . $key . "|" . $value . "\n";
}
 
for ($i = 0; $i <p>Dies ist die grundlegende Implementierung, auf die wir uns beim täglichen Codieren verlassen. Sie können den Schlüsselnamen und den Schlüsselwert jedes Elements erhalten, indem Sie das Array durchlaufen. </p><p>Natürlich, wenn wir wissen wollen, wann ein Array verwendet werden kann. PHP bietet eine praktische integrierte Funktion: </p><pre class="brush:php;toolbar:false">print is_array($array) ? "yes" : "no"; // yes

Array-ähnliche Verarbeitung

Manchmal müssen wir einige Daten auf die gleiche Weise durchlaufen, aber es handelt sich nicht um Array-Typen. Beispiel: Verarbeitung der Klasse DOMDocument:

$document = new DOMDocument();
$document->loadXML("<p></p>");

$elements = $document->getElementsByTagName("p");
print_r($elements); // DOMNodeList Object ( [length] => 1 )

Dies ist offensichtlich kein Array, aber es verfügt über ein Attribut length. Können wir es wie ein Array durchlaufen? Wir können feststellen, ob die folgende spezielle Schnittstelle implementiert ist:

print ($elements instanceof Traversable) ? "yes" : "no"; // yes

Das ist wirklich nützlich. Es wird nicht dazu führen, dass wir einen Fehler auslösen, wenn wir über nicht durchlaufbare Daten iterieren. Wir müssen vor der Verarbeitung nur testen.

Dies wirft jedoch eine andere Frage auf: Können wir benutzerdefinierte Klassen auch mit dieser Funktion versehen? Die Antwort ist ja! Die erste Implementierung sieht so aus:

class MyTraversable implements Traversable
{
    //  在这里编码...
}

Wenn wir diese Klasse ausführen, sehen wir eine Fehlermeldung:

PHP Schwerwiegender Fehler: Die Klasse MyTraversable muss die Schnittstelle Traversable als Teil von Iterator oder IteratorAggregate implementieren

Iterator (Iterator)

Wir können Traversable nicht direkt implementieren, aber wir können die zweite Option ausprobieren:

class MyTraversable implements Iterator
{
    //  在这里编码...
}

Diese Schnittstelle erfordert Wir implementieren 5 Methoden. Verbessern wir unseren Iterator:

class MyTraversable implements Iterator
{
    protected $data;

    protected $index = 0;

    public function __construct($data)
    {
        $this->data = $data;
    }

    public function current()
    {
        return $this->data[$this->index];
    }

    public function next()
    {
        return $this->data[$this->index++];
    }

    public function key()
    {
        return $this->index;
    }

    public function rewind()
    {
        $this->index = 0;
    }

    public function valid()
    {
        return $this->index data);
    }
}

Hier müssen wir auf ein paar Dinge achten:

  1. Wir müssen die vom Konstruktor übergebenen $data speichern Methode Array, damit wir später seine Elemente daraus abrufen können.

  2. erfordert außerdem einen internen Index (oder Zeiger), um den Überblick über das aktuelle oder nächste-Element zu behalten.

  3. rewind() setzt nur die Eigenschaft index zurück, also current() und next() damit es richtig funktioniert.

  4. Schlüsselnamen sind nicht auf numerische Typen beschränkt! Um das Beispiel einfach zu halten, wird hier die Array-Indizierung verwendet.

Wir können diesen Code wie folgt ausführen:

$iterator = new MyIterator(["foo", "bar", "baz"]);
 
foreach ($iterator as $key => $value) {
    print "item: " . $key . "|" . $value . "\n";
}

Das scheint zu viel Arbeit zu sein, aber es ist möglich, foreach wie ein prägnantes Array A zu verwenden Implementierung der /for-Funktion.

IteratorAggregate (Aggregationiterator)

Erinnern Sie sich an die Traversable-Ausnahme, die von der zweiten Schnittstelle ausgelöst wurde? Schauen wir uns eine schnellere Implementierung als die Implementierung der Iterator-Schnittstelle an:

class MyIteratorAggregate implements IteratorAggregate
{
    protected $data;

    public function __construct($data)
    {
        $this->data = $data;
    }

    public function getIterator()
    {
        return new ArrayIterator($this->data);
    }
}

Hier betrügen wir. Anstatt einen vollständigen Iterator zu implementieren, dekorieren wir ihn über ArrayIterator(). Dies vereinfacht den Code jedoch erheblich im Vergleich zur Implementierung eines vollständigen Iterators.

Analyse der Multitasking-Coroutine-Verarbeitung von PHP

Bruder, mach dir keine Sorgen! Vergleichen wir zunächst etwas Code. Zuerst lesen wir jede Datenzeile aus der Datei, ohne einen Generator zu verwenden:

$content = file_get_contents(__FILE__);

$lines = explode("\n", $content);

foreach ($lines as $i => $line) {
    print $i . ". " . $line . "\n";
}

Dieser Code liest die Datei selbst und gibt dann die Zeilennummer und den Code jeder Zeile aus. Warum nutzen wir also nicht Generatoren?

function lines($file) {
    $handle = fopen($file, 'r');

    while (!feof($handle)) {
        yield trim(fgets($handle));
    }

    fclose($handle);
}

foreach (lines(__FILE__) as $i => $line) {
    print $i . ". " . $line . "\n";
}

Ich weiß, das scheint komplizierter zu sein. Gut, aber das liegt daran, dass wir die Funktion file_get_contents() nicht verwenden. Ein Generator sieht aus wie eine Funktion, stoppt jedoch jedes Mal, wenn er das Schlüsselwort yield erhält.

Generatoren sehen ein bisschen wie Iteratoren aus:

print_r(lines(__FILE__)); // Generator Object ( )

Obwohl es kein Iterator ist, ist es ein Generator. Welche Methoden sind intern definiert?

print_r(get_class_methods(lines(__FILE__)));
 
// Array
// (
//     [0] => rewind
//     [1] => valid
//     [2] => current
//     [3] => key
//     [4] => next
//     [5] => send
//     [6] => throw
//     [7] => __wakeup
// )
Wenn Sie eine große Datei lesen und dann memory_get_peak_usage() verwenden, werden Sie feststellen, dass der Generatorcode eine feste Menge an Speicher verwendet, egal wie groß die Datei ist. Es geht jeweils eine Zeile voran. Verwenden Sie stattdessen die Funktion file_get_contents(), um die gesamte Datei zu lesen, was mehr Speicher beansprucht. Hier verschaffen uns Generatoren einen Vorteil, wenn wir solche Dinge iterieren!

Senden (Daten senden)

kann Daten an den Generator senden. Schauen Sie sich diesen Generator an:

<?php $generator = call_user_func(function() {
    yield "foo";
});

print $generator->current() . "\n"; // foo
注意这里我们如何在 call_user_func() 函数中封装生成器函数的?这里仅仅是一个简单的函数定义,然后立即调用它获取一个新的生成器实例...

我们已经见过 yield 的用法。我们可以通过扩展这个生成器来接收数据:

$generator = call_user_func(function() {
    $input = (yield "foo");

    print "inside: " . $input . "\n";
});

print $generator->current() . "\n";

$generator->send("bar");

数据通过 yield 关键字传入和返回。首先,执行 current() 代码直到遇到 yield,返回 foosend() 将输出传入到生成器打印输入的位置。你需要习惯这种用法。

抛出异常(Throw)

由于我们需要同这些函数进行交互,可能希望将异常推送到生成器中。这样这些函数就可以自行处理异常。

看看下面这个示例:

$multiply = function($x, $y) {
    yield $x * $y;
};

print $multiply(5, 6)->current(); // 30

现在让我们将它封装到另一个函数中:

$calculate = function ($op, $x, $y) use ($multiply) {
    if ($op === 'multiply') {
        $generator = $multiply($x, $y);

        return $generator->current();
    }
};

print $calculate("multiply", 5, 6); // 30

这里我们通过一个普通闭包将乘法生成器封装起来。现在让我们验证无效参数:

$calculate = function ($op, $x, $y) use ($multiply) {

    if ($op === "multiply") {
        $generator = $multiply($x, $y);

        if (!is_numeric($x) || !is_numeric($y)) {
            throw new InvalidArgumentException();
        }

        return $generator->current();
    }
};

print $calculate('multiply', 5, 'foo'); // PHP Fatal error...

如果我们希望能够通过生成器处理异常?我们怎样才能将异常传入生成器呢!

$multiply = function ($x, $y) {
    try {
        yield $x * $y;
    } catch (InvalidArgumentException $exception) {
        print "ERRORS!";
    }
};

$calculate = function ($op, $x, $y) use ($multiply) {

    if ($op === "multiply") {
        $generator = $multiply($x, $y);

        if (!is_numeric($x) || !is_numeric($y)) {
            $generator->throw(new InvalidArgumentException());
        }

        return $generator->current();
    }
};
print $calculate('multiply', 5, 'foo'); // PHP Fatal error...

棒呆了!我们不仅可以像迭代器一样使用生成器。还可以通过它们发送数据并抛出异常。它们是可中断和可恢复的函数。有些语言把这些函数叫做……

Analyse der Multitasking-Coroutine-Verarbeitung von PHP

我们可以使用协程(coroutines)来构建异步代码。让我们来创建一个简单的任务调度程序。首先我们需要一个 Task 类:

class Task
{
    protected $generator;

    public function __construct(Generator $generator)
    {
        $this->generator = $generator;
    }

    public function run()
    {
        $this->generator->next();
    }

    public function finished()
    {
        return !$this->generator->valid();
    }
}

Task 是普通生成器的装饰器。我们将生成器赋值给它的成员变量以供后续使用,然后实现一个简单的 run()finished() 方法。run() 方法用于执行任务,finished() 方法用于让调度程序知道何时终止运行。

然后我们需要一个 Scheduler 类:

class Scheduler
{
    protected $queue;

    public function __construct()
    {
        $this->queue = new SplQueue();
    }

    public function enqueue(Task $task)
    {
        $this->queue->enqueue($task);
    }

    pulic function run()
    {
        while (!$this->queue->isEmpty()) {
            $task = $this->queue->dequeue();
            $task->run();

            if (!$task->finished()) {
                $this->queue->enqueue($task);
            }
        }
    }
}

Scheduler 用于维护一个待执行的任务队列。run() 会弹出队列中的所有任务并执行它,直到运行完整个队列任务。如果某个任务没有执行完毕,当这个任务本次运行完成后,我们将再次入列。

SplQueue 对于这个示例来讲再合适不过了。它是一种 FIFO(先进先出:fist in first out) 数据结构,能够确保每个任务都能够获取足够的处理时间。

我们可以像这样运行这段代码:

$scheduler = new Scheduler();

$task1 = new Task(call_user_func(function() {
    for ($i = 0; $i enqueue($task1);
$scheduler->enqueue($task2);

$scheduler->run();

运行时,我们将看到如下执行结果:

task 1: 0
task 1: 1
task 2: 0
task 2: 1
task 1: 2
task 2: 2
task 2: 3
task 2: 4
task 2: 5

这几乎就是我们想要的执行结果。不过有个问题发生在首次运行每个任务时,它们都执行了两次。我们可以对 Task 类稍作修改来修复这个问题:

class Task
{
    protected $generator;

    protected $run = false;

    public function __construct(Generator $generator)
    {
        $this->generator = $generator;
    }

    public function run()
    {
        if ($this->run) {
            $this->generator->next();
        } else {
            $this->generator->current();
        }

        $this->run = true;
    }

    public function finished()
    {
        return !$this->generator->valid();
    }
}

我们需要调整首次 run() 方法调用,从生成器当前有效的指针读取运行。后续调用可以从下一个指针读取运行...

Analyse der Multitasking-Coroutine-Verarbeitung von PHP

有些人基于这个思路实现了一些超赞的类库。我们来看看其中的两个...

RecoilPHP

RecoilPHP 是一套基于协程的类库,它最令人印象深刻的是用于 ReactPHP 内核。可以将事件循环在 RecoilPHP 和 RecoilPHP 之间进行交换,而你的程序无需架构上的调整。

我们来看一下 ReactPHP 异步 DNS 解决方案:

function resolve($domain, $resolver) {
    $resolver
        ->resolve($domain)
        ->then(function ($ip) use ($domain) {
            print "domain: " . $domain . "\n";
            print "ip: " . $ip . "\n";
        }, function ($error) {            
            print $error . "\n";
        })
}

function run()
{
    $loop = React\EventLoop\Factory::create();
 
    $factory = new React\Dns\Resolver\Factory();
 
    $resolver = $factory->create("8.8.8.8", $loop);
 
    resolve("silverstripe.org", $resolver);
    resolve("wordpress.org", $resolver);
    resolve("wardrobecms.com", $resolver);
    resolve("pagekit.com", $resolver);
 
    $loop->run();
}
 
run();

resolve() 接收域名和 DNS 解析器,并使用 ReactPHP 执行标准的 DNS 查找。不用太过纠结与 resolve() 函数内部。重要的是这个函数不是生成器,而是一个函数!

run() 创建一个 ReactPHP 事件循环,DNS 解析器(这里是个工厂实例)解析若干域名。同样,这个也不是一个生成器。

想知道 RecoilPHP 到底有何不同?还希望掌握更多细节!

use Recoil\Recoil;
 
function resolve($domain, $resolver)
{
    try {
        $ip = (yield $resolver->resolve($domain));
 
        print "domain: " . $domain . "\n";
        print "ip: " . $ip . "\n";
    } catch (Exception $exception) {
        print $exception->getMessage() . "\n";
    }
}
 
function run()
{
    $loop = (yield Recoil::eventLoop());
 
    $factory = new React\Dns\Resolver\Factory();
 
    $resolver = $factory->create("8.8.8.8", $loop);
 
    yield [
        resolve("silverstripe.org", $resolver),
        resolve("wordpress.org", $resolver),
        resolve("wardrobecms.com", $resolver),
        resolve("pagekit.com", $resolver),
    ];
}
 
Recoil::run("run");

通过将它集成到 ReactPHP 来完成一些令人称奇的工作。每次运行 resolve() 时,RecoilPHP 会管理由 $resoler->resolve() 返回的 promise 对象,然后将数据发送给生成器。此时我们就像在编写同步代码一样。与我们在其他一步模型中使用回调代码不同,这里只有一个指令列表。

RecoilPHP 知道它应该管理一个有执行 run() 函数时返回的 yield 数组。RoceilPHP 还支持基于协程的数据库(PDO)和日志库。

IcicleIO

IcicleIO 为了一全新的方案实现 ReactPHP 一样的目标,而仅仅使用协程功能。相比 ReactPHP 它仅包含极少的组件。但是,核心的异步流、服务器、Socket、事件循环特性一个不落。

让我们看一个 socket 服务器示例:

use Icicle\Coroutine\Coroutine;
use Icicle\Loop\Loop;
use Icicle\Socket\Client\ClientInterface;
use Icicle\Socket\Server\ServerInterface;
use Icicle\Socket\Server\ServerFactory;
 
$factory = new ServerFactory();
 
$coroutine = Coroutine::call(function (ServerInterface $server) {
    $clients = new SplObjectStorage();
     
    $handler = Coroutine::async(
        function (ClientInterface $client) use (&$clients) {
            $clients->attach($client);
             
            $host = $client->getRemoteAddress();
            $port = $client->getRemotePort();
             
            $name = $host . ":" . $port;
             
            try {
                foreach ($clients as $stream) {
                    if ($client !== $stream) {
                        $stream->write($name . "connected.\n");
                    }
                }
 
                yield $client->write("Welcome " . $name . "!\n");
                 
                while ($client->isReadable()) {
                    $data = trim(yield $client->read());
                     
                    if ("/exit" === $data) {
                        yield $client->end("Goodbye!\n");
                    } else {
                        $message = $name . ":" . $data . "\n";
                        
                        foreach ($clients as $stream) {
                            if ($client !== $stream) {
                                $stream->write($message);
                            }
                        }
                    }
                }
            } catch (Exception $exception) {
                $client->close($exception);
            } finally {
                $clients->detach($client);
                foreach ($clients as $stream) {
                    $stream->write($name . "disconnected.\n");
                }
            }
        }
    );
     
    while ($server->isOpen()) {
        $handler(yield $server->accept());
    }
}, $factory->create("127.0.0.1", 6000));
 
Loop::run();

据我所知,这段代码所做的事情如下:

  1. 在 127.0.0.1 和 6000 端口创建一个服务器实例,然后将其传入外部生成器.

  2. 外部生成器运行,同时服务器等待新连接。当服务器接收一个连接它将其传入内部生成器。

  3. 内部生成器写入消息到 socket。当 socket 可读时运行。

  4. 每次 socket 向服务器发送消息时,内部生成器检测消息是否是退出标识。如果是,通知其他 socket。否则,其它 socket 发送这个相同的消息。

打开命令行终端输入 nc localhost 6000 查看执行结果!

该示例使用 SplObjectStorage 跟踪 socket 连接。这样我们就可以向所有 socket 发送消息。

Analyse der Multitasking-Coroutine-Verarbeitung von PHP

这个话题可以包含很多内容。希望您能看到生成器是如何创建的,以及它们如何帮助编写迭代程序和异步代码。

如果你有问题,可以随时问我。

相关推荐:

浅谈一下PHP生成器的使用方法

Das obige ist der detaillierte Inhalt vonAnalyse der Multitasking-Coroutine-Verarbeitung von PHP. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn