Heim >Backend-Entwicklung >PHP-Tutorial >PHP implementiert die Darstellung der Graph-Adjazenzmatrix und den Traversalalgorithmus

PHP implementiert die Darstellung der Graph-Adjazenzmatrix und den Traversalalgorithmus

墨辰丷
墨辰丷Original
2018-05-17 10:23:271642Durchsuche

In diesem Artikel werden hauptsächlich die Adjazenzmatrixdarstellung des PHP-Implementierungsgraphen und mehrere einfache Traversalalgorithmen vorgestellt. Er analysiert die Definition des PHP-Implementierungsgraphen basierend auf der Adjazenzmatrix und die damit verbundenen Traversaloperationsfähigkeiten in Form von Beispielen it

Die Einzelheiten lauten wie folgt:

In der Webentwicklung werden Diagrammdatenstrukturen viel seltener verwendet als Bäume, kommen aber in einigen Unternehmen häufig vor. Hier sind mehrere Algorithmen zur Diagrammpfadfindung. Und verwenden Sie PHP, um es zu implementieren.

Freuds Algorithmus durchläuft hauptsächlich den Scheitelpunktsatz entsprechend dem Gewicht der benachbarten Kanten zwischen den Punkten Mehrfachdurchquerungen Der kürzeste Weg von Punkt zu Punkt ist logisch am einfachsten zu verstehen und relativ einfach zu implementieren. Die Zeitkomplexität beträgt O(n^3); Die kürzeste Route in OSPF Die Essenz des Djisktra-Algorithmus ist ein gieriger Algorithmus. Er durchläuft und erweitert kontinuierlich den Scheitelpunktpfadsatz S. Sobald ein kürzerer Punkt-zu-Punkt-Pfad gefunden wird, ersetzt er den ursprünglichen kürzesten Pfad in S. Nach Abschluss Bei allen Durchläufen ist S die Menge aller Eckpunkte. Die Zeitkomplexität des Dijkstra-Algorithmus beträgt O(n^2); Somit ergibt sich der kürzeste Weg. Die Zeitkomplexität beträgt O(N*logN); :

<?php
/**
 * PHP 实现图邻接矩阵
 */
class MGraph{
  private $vexs; //顶点数组
  private $arc; //边邻接矩阵,即二维数组
  private $arcData; //边的数组信息
  private $direct; //图的类型(无向或有向)
  private $hasList; //尝试遍历时存储遍历过的结点
  private $queue; //广度优先遍历时存储孩子结点的队列,用数组模仿
  private $infinity = 65535;//代表无穷,即两点无连接,建带权值的图时用,本示例不带权值
  private $primVexs; //prim算法时保存顶点
  private $primArc; //prim算法时保存边
  private $krus;//kruscal算法时保存边的信息
  public function MGraph($vexs, $arc, $direct = 0){
    $this->vexs = $vexs;
    $this->arcData = $arc;
    $this->direct = $direct;
    $this->initalizeArc();
    $this->createArc();
  }
  private function initalizeArc(){
    foreach($this->vexs as $value){
      foreach($this->vexs as $cValue){
        $this->arc[$value][$cValue] = ($value == $cValue ? 0 : $this->infinity);
      }
    }
  }
  //创建图 $direct:0表示无向图,1表示有向图
  private function createArc(){
    foreach($this->arcData as $key=>$value){
      $strArr = str_split($key);
      $first = $strArr[0];
      $last = $strArr[1];
      $this->arc[$first][$last] = $value;
      if(!$this->direct){
        $this->arc[$last][$first] = $value;
      }
    }
  }
  //floyd算法
  public function floyd(){
    $path = array();//路径数组
    $distance = array();//距离数组
    foreach($this->arc as $key=>$value){
      foreach($value as $k=>$v){
        $path[$key][$k] = $k;
        $distance[$key][$k] = $v;
      }
    }
    for($j = 0; $j < count($this->vexs); $j ++){
      for($i = 0; $i < count($this->vexs); $i ++){
        for($k = 0; $k < count($this->vexs); $k ++){
          if($distance[$this->vexs[$i]][$this->vexs[$k]] > $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]){
            $path[$this->vexs[$i]][$this->vexs[$k]] = $path[$this->vexs[$i]][$this->vexs[$j]];
            $distance[$this->vexs[$i]][$this->vexs[$k]] = $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]];
          }
        }
      }
    }
    return array($path, $distance);
  }
  //djikstra算法
  public function dijkstra(){
    $final = array();
    $pre = array();//要查找的结点的前一个结点数组
    $weight = array();//权值和数组
    foreach($this->arc[$this->vexs[0]] as $k=>$v){
      $final[$k] = 0;
      $pre[$k] = $this->vexs[0];
      $weight[$k] = $v;
    }
    $final[$this->vexs[0]] = 1;
    for($i = 0; $i < count($this->vexs); $i ++){
      $key = 0;
      $min = $this->infinity;
      for($j = 1; $j < count($this->vexs); $j ++){
        $temp = $this->vexs[$j];
        if($final[$temp] != 1 && $weight[$temp] < $min){
          $key = $temp;
          $min = $weight[$temp];
        }
      }
      $final[$key] = 1;
      for($j = 0; $j < count($this->vexs); $j ++){
        $temp = $this->vexs[$j];
        if($final[$temp] != 1 && ($min + $this->arc[$key][$temp]) < $weight[$temp]){
          $pre[$temp] = $key;
          $weight[$temp] = $min + $this->arc[$key][$temp];
        }
      }
    }
    return $pre;
  }
  //kruscal算法
  private function kruscal(){
    $this->krus = array();
    foreach($this->vexs as $value){
      $krus[$value] = 0;
    }
    foreach($this->arc as $key=>$value){
      $begin = $this->findRoot($key);
      foreach($value as $k=>$v){
        $end = $this->findRoot($k);
        if($begin != $end){
          $this->krus[$begin] = $end;
        }
      }
    }
  }
  //查找子树的尾结点
  private function findRoot($node){
    while($this->krus[$node] > 0){
      $node = $this->krus[$node];
    }
    return $node;
  }
  //prim算法,生成最小生成树
  public function prim(){
    $this->primVexs = array();
    $this->primArc = array($this->vexs[0]=>0);
    for($i = 1; $i < count($this->vexs); $i ++){
      $this->primArc[$this->vexs[$i]] = $this->arc[$this->vexs[0]][$this->vexs[$i]];
      $this->primVexs[$this->vexs[$i]] = $this->vexs[0];
    }
    for($i = 0; $i < count($this->vexs); $i ++){
      $min = $this->infinity;
      $key;
      foreach($this->vexs as $k=>$v){
        if($this->primArc[$v] != 0 && $this->primArc[$v] < $min){
          $key = $v;
          $min = $this->primArc[$v];
        }
      }
      $this->primArc[$key] = 0;
      foreach($this->arc[$key] as $k=>$v){
        if($this->primArc[$k] != 0 && $v < $this->primArc[$k]){
          $this->primArc[$k] = $v;
          $this->primVexs[$k] = $key;
        }
      }
    }
    return $this->primVexs;
  }
  //一般算法,生成最小生成树
  public function bst(){
    $this->primVexs = array($this->vexs[0]);
    $this->primArc = array();
    next($this->arc[key($this->arc)]);
    $key = NULL;
    $current = NULL;
    while(count($this->primVexs) < count($this->vexs)){
      foreach($this->primVexs as $value){
        foreach($this->arc[$value] as $k=>$v){
          if(!in_array($k, $this->primVexs) && $v != 0 && $v != $this->infinity){
            if($key == NULL || $v < current($current)){
              $key = $k;
              $current = array($value . $k=>$v);
            }
          }
        }
      }
      $this->primVexs[] = $key;
      $this->primArc[key($current)] = current($current);
      $key = NULL;
      $current = NULL;
    }
    return array(&#39;vexs&#39;=>$this->primVexs, &#39;arc&#39;=>$this->primArc);
  }
  //一般遍历
  public function reserve(){
    $this->hasList = array();
    foreach($this->arc as $key=>$value){
      if(!in_array($key, $this->hasList)){
        $this->hasList[] = $key;
      }
      foreach($value as $k=>$v){
        if($v == 1 && !in_array($k, $this->hasList)){
          $this->hasList[] = $k;
        }
      }
    }
    foreach($this->vexs as $v){
      if(!in_array($v, $this->hasList))
        $this->hasList[] = $v;
    }
    return implode($this->hasList);
  }
  //广度优先遍历
  public function bfs(){
    $this->hasList = array();
    $this->queue = array();
    foreach($this->arc as $key=>$value){
      if(!in_array($key, $this->hasList)){
        $this->hasList[] = $key;
        $this->queue[] = $value;
        while(!empty($this->queue)){
          $child = array_shift($this->queue);
          foreach($child as $k=>$v){
            if($v == 1 && !in_array($k, $this->hasList)){
              $this->hasList[] = $k;
              $this->queue[] = $this->arc[$k];
            }
          }
        }
      }
    }
    return implode($this->hasList);
  }
  //执行深度优先遍历
  public function excuteDfs($key){
    $this->hasList[] = $key;
    foreach($this->arc[$key] as $k=>$v){
      if($v == 1 && !in_array($k, $this->hasList))
        $this->excuteDfs($k);
    }
  }
  //深度优先遍历
  public function dfs(){
    $this->hasList = array();
    foreach($this->vexs as $key){
      if(!in_array($key, $this->hasList))
        $this->excuteDfs($key);
    }
    return implode($this->hasList);
  }
  //返回图的二维数组表示
  public function getArc(){
    return $this->arc;
  }
  //返回结点个数
  public function getVexCount(){
    return count($this->vexs);
  }
}
$a = array(&#39;a&#39;, &#39;b&#39;, &#39;c&#39;, &#39;d&#39;, &#39;e&#39;, &#39;f&#39;, &#39;g&#39;, &#39;h&#39;, &#39;i&#39;);
$b = array(&#39;ab&#39;=>&#39;10&#39;, &#39;af&#39;=>&#39;11&#39;, &#39;bg&#39;=>&#39;16&#39;, &#39;fg&#39;=>&#39;17&#39;, &#39;bc&#39;=>&#39;18&#39;, &#39;bi&#39;=>&#39;12&#39;, &#39;ci&#39;=>&#39;8&#39;, &#39;cd&#39;=>&#39;22&#39;, &#39;di&#39;=>&#39;21&#39;, &#39;dg&#39;=>&#39;24&#39;, &#39;gh&#39;=>&#39;19&#39;, &#39;dh&#39;=>&#39;16&#39;, &#39;de&#39;=>&#39;20&#39;, &#39;eh&#39;=>&#39;7&#39;,&#39;fe&#39;=>&#39;26&#39;);//键为边,值权值
$test = new MGraph($a, $b);
print_r($test->bst());


Verwandte Empfehlungen:

PHP-Implementierung der Binärbaumtiefe und -breite zuerst Schritte des Traversalalgorithmus Detaillierte Erklärung


JavaScript-Freigabe von rekursiven Traversal- und nichtrekursiven Traversalalgorithmen für Mehrbäume


Zusammenfassung des PHP-Traversalalgorithmus

Das obige ist der detaillierte Inhalt vonPHP implementiert die Darstellung der Graph-Adjazenzmatrix und den Traversalalgorithmus. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn