Dieser Artikel stellt hauptsächlich die detaillierte Erklärung von read_excel in Python 2.7 vor. Jetzt kann ich ihn mit Ihnen teilen.
Importieren Pandas-Modul:
import pandas as pd
Verwenden Sie import, um das Pandas-Modul zu lesen, und verwenden Sie der Einfachheit halber die Abkürzung pd.
Lesen Sie die zu verarbeitende Excel-Datei:
df = pd.read_excel('log.xls')
Lesen Sie mit read_excel Funktion Geben Sie die Excel-Datei ein, die durch den Pfad ersetzt werden muss, in dem sich die Excel-Datei befindet. Nach dem Lesen wird es zu einem Pandas-DataFrame-Objekt. DataFrame ist eine spaltenorientierte zweidimensionale Tabellenstruktur und enthält Listen und Zeilenbeschriftungen. Operationen an Excel-Dateien werden in Operationen an DataFrame umgewandelt. Wenn ein Excel mehrere Tabellen enthält und Sie nur eine davon lesen möchten, können Sie außerdem Folgendes tun:
df = pd.read_excel('log.xls', sheetname=1)
Ein Parameter sheetname wurde hinzugefügt, der darauf hinweist um welche Zahl es sich handelt, beginnend bei 0. Was ich oben eingestellt habe, ist 1, was die zweite Tabelle ist.
Nach dem Lesen können Sie zunächst die Kopfzeileninformationen und den Datentyp jeder Spalte überprüfen:
df.dtypes
Die Ausgabe ist wie folgt:
Member object Unnamed: 1 float64 Unnamed: 2 float64 Unnamed: 3 float64 Unnamed: 4 float64 Unnamed: 5 float64 家内外活动类型 object Unnamed: 7 object activity object dtype: object
Extrahieren Sie die letzte Datenzeile, die kontinuierlich für jedes Mitglied angezeigt wird:
new_df = df.drop_duplicates(subset='Member', keep='last')
Die obige Anweisung bedeutet, redundante Zeilen basierend auf dem Mitgliedsfeld zu entfernen und die letzte Datenzeile in derselben Zeile beizubehalten. Dadurch werden die Daten der letzten Zeile jedes Mitglieds abgerufen und der gefilterte DataFrame zurückgegeben.
Als nächstes müssen Sie die verarbeiteten Ergebnisse als Excel-Datei speichern:
out = pd.ExcelWriter('output.xls') new_df.to_excel(out) out.save()
output.xls gehört Ihnen Der zu speichernde Dateiname kann beliebig gewählt werden. Anschließend wird der Inhalt des DataFrame in der Datei gespeichert und die Datei schließlich auf der Systemfestplatte gespeichert.
Als nächstes sehen Sie eine neue Datei im aktuellen Verzeichnis, die direkt mit Excel geöffnet und angezeigt werden kann.
Pandas bietet auch viele APIs. Sie können die API-Dokumentation durchsuchen und die entsprechende Funktion finden, um die Aufgabe entsprechend der spezifischen Aufgabe abzuschließen.
Anbei: Ein vollständiges Beispiel
#coding=utf-8 import pandas as pd # 读入excel文件中的第2个表 df = pd.read_excel('log.xls', sheetname=1) # 查看表的数据类型 print df.dtypes # 查看Member列的数据 print df['Member'] ''' # 新建一列,每一行的值是Member列和activity列相同行值的和 for i in df.index: df['activity_2'][i] = df['Member'][i] + df['activity'][i] ''' # 根据Member字段去除掉多余的行,并且保留相同行的最后一行数据 new_df = df.drop_duplicates(subset='Member', keep='last') # 导出结果 out = pd.ExcelWriter('output.xls') new_df.to_excel(out) out.save()
Das obige ist der detaillierte Inhalt vonDetaillierte Erklärung von read_excel in Python 2.7 Pandas. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Die Auswahl von Python oder C hängt von den Projektanforderungen ab: 1) Wenn Sie eine schnelle Entwicklung, Datenverarbeitung und Prototypdesign benötigen, wählen Sie Python. 2) Wenn Sie eine hohe Leistung, eine geringe Latenz und eine schließende Hardwarekontrolle benötigen, wählen Sie C.

Indem Sie täglich 2 Stunden Python -Lernen investieren, können Sie Ihre Programmierkenntnisse effektiv verbessern. 1. Lernen Sie neues Wissen: Lesen Sie Dokumente oder sehen Sie sich Tutorials an. 2. Üben: Schreiben Sie Code und vollständige Übungen. 3. Überprüfung: Konsolidieren Sie den Inhalt, den Sie gelernt haben. 4. Projektpraxis: Wenden Sie an, was Sie in den tatsächlichen Projekten gelernt haben. Ein solcher strukturierter Lernplan kann Ihnen helfen, Python systematisch zu meistern und Karriereziele zu erreichen.

Zu den Methoden zum effizienten Erlernen von Python innerhalb von zwei Stunden gehören: 1. Überprüfen Sie das Grundkenntnis und stellen Sie sicher, dass Sie mit der Python -Installation und der grundlegenden Syntax vertraut sind. 2. Verstehen Sie die Kernkonzepte von Python wie Variablen, Listen, Funktionen usw.; 3.. Master Basic und Advanced Nutzung unter Verwendung von Beispielen; 4.. Lernen Sie gemeinsame Fehler und Debugging -Techniken; 5. Wenden Sie Leistungsoptimierung und Best Practices an, z. B. die Verwendung von Listenfunktionen und dem Befolgen des Pep8 -Stilhandbuchs.

Python ist für Anfänger und Datenwissenschaften geeignet und C für Systemprogramme und Spieleentwicklung geeignet. 1. Python ist einfach und einfach zu bedienen, geeignet für Datenwissenschaft und Webentwicklung. 2.C bietet eine hohe Leistung und Kontrolle, geeignet für Spieleentwicklung und Systemprogrammierung. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Python eignet sich besser für Datenwissenschaft und schnelle Entwicklung, während C besser für Hochleistungen und Systemprogramme geeignet ist. 1. Python -Syntax ist prägnant und leicht zu lernen, geeignet für die Datenverarbeitung und wissenschaftliches Computer. 2.C hat eine komplexe Syntax, aber eine hervorragende Leistung und wird häufig in der Spieleentwicklung und der Systemprogrammierung verwendet.

Es ist machbar, zwei Stunden am Tag zu investieren, um Python zu lernen. 1. Lernen Sie neues Wissen: Lernen Sie in einer Stunde neue Konzepte wie Listen und Wörterbücher. 2. Praxis und Übung: Verwenden Sie eine Stunde, um Programmierübungen durchzuführen, z. B. kleine Programme. Durch vernünftige Planung und Ausdauer können Sie die Kernkonzepte von Python in kurzer Zeit beherrschen.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!
