Heim >Backend-Entwicklung >Python-Tutorial >Detaillierte Erläuterung der Implementierung des logistischen Regressionsalgorithmus mit TensorFlow
In diesem Artikel wird hauptsächlich die Verwendung von TensorFlow zur Implementierung des logistischen Regressionsalgorithmus vorgestellt. Er hat einen bestimmten Referenzwert. Jetzt können Freunde in Not darauf verweisen den logistischen Regressionsalgorithmus und prognostizieren die Wahrscheinlichkeit eines niedrigen Geburtsgewichts.
# Logistic Regression # 逻辑回归 #---------------------------------- # # This function shows how to use TensorFlow to # solve logistic regression. # y = sigmoid(Ax + b) # # We will use the low birth weight data, specifically: # y = 0 or 1 = low birth weight # x = demographic and medical history data import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import requests from tensorflow.python.framework import ops import os.path import csv ops.reset_default_graph() # Create graph sess = tf.Session() ### # Obtain and prepare data for modeling ### # name of data file birth_weight_file = 'birth_weight.csv' # download data and create data file if file does not exist in current directory if not os.path.exists(birth_weight_file): birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat' birth_file = requests.get(birthdata_url) birth_data = birth_file.text.split('\r\n') birth_header = birth_data[0].split('\t') birth_data = [[float(x) for x in y.split('\t') if len(x)>=1] for y in birth_data[1:] if len(y)>=1] with open(birth_weight_file, "w") as f: writer = csv.writer(f) writer.writerow(birth_header) writer.writerows(birth_data) f.close() # read birth weight data into memory birth_data = [] with open(birth_weight_file, newline='') as csvfile: csv_reader = csv.reader(csvfile) birth_header = next(csv_reader) for row in csv_reader: birth_data.append(row) birth_data = [[float(x) for x in row] for row in birth_data] # Pull out target variable y_vals = np.array([x[0] for x in birth_data]) # Pull out predictor variables (not id, not target, and not birthweight) x_vals = np.array([x[1:8] for x in birth_data]) # set for reproducible results seed = 99 np.random.seed(seed) tf.set_random_seed(seed) # Split data into train/test = 80%/20% # 分割数据集为测试集和训练集 train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False) test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices))) x_vals_train = x_vals[train_indices] x_vals_test = x_vals[test_indices] y_vals_train = y_vals[train_indices] y_vals_test = y_vals[test_indices] # Normalize by column (min-max norm) # 将所有特征缩放到0和1区间(min-max缩放),逻辑回归收敛的效果更好 # 归一化特征 def normalize_cols(m): col_max = m.max(axis=0) col_min = m.min(axis=0) return (m-col_min) / (col_max - col_min) x_vals_train = np.nan_to_num(normalize_cols(x_vals_train)) x_vals_test = np.nan_to_num(normalize_cols(x_vals_test)) ### # Define Tensorflow computational graph¶ ### # Declare batch size batch_size = 25 # Initialize placeholders x_data = tf.placeholder(shape=[None, 7], dtype=tf.float32) y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # Create variables for linear regression A = tf.Variable(tf.random_normal(shape=[7,1])) b = tf.Variable(tf.random_normal(shape=[1,1])) # Declare model operations model_output = tf.add(tf.matmul(x_data, A), b) # Declare loss function (Cross Entropy loss) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=model_output, labels=y_target)) # Declare optimizer my_opt = tf.train.GradientDescentOptimizer(0.01) train_step = my_opt.minimize(loss) ### # Train model ### # Initialize variables init = tf.global_variables_initializer() sess.run(init) # Actual Prediction # 除记录损失函数外,也需要记录分类器在训练集和测试集上的准确度。 # 所以创建一个返回准确度的预测函数 prediction = tf.round(tf.sigmoid(model_output)) predictions_correct = tf.cast(tf.equal(prediction, y_target), tf.float32) accuracy = tf.reduce_mean(predictions_correct) # Training loop # 开始遍历迭代训练,记录损失值和准确度 loss_vec = [] train_acc = [] test_acc = [] for i in range(1500): rand_index = np.random.choice(len(x_vals_train), size=batch_size) rand_x = x_vals_train[rand_index] rand_y = np.transpose([y_vals_train[rand_index]]) sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}) loss_vec.append(temp_loss) temp_acc_train = sess.run(accuracy, feed_dict={x_data: x_vals_train, y_target: np.transpose([y_vals_train])}) train_acc.append(temp_acc_train) temp_acc_test = sess.run(accuracy, feed_dict={x_data: x_vals_test, y_target: np.transpose([y_vals_test])}) test_acc.append(temp_acc_test) if (i+1)%300==0: print('Loss = ' + str(temp_loss)) ### # Display model performance ### # 绘制损失和准确度 plt.plot(loss_vec, 'k-') plt.title('Cross Entropy Loss per Generation') plt.xlabel('Generation') plt.ylabel('Cross Entropy Loss') plt.show() # Plot train and test accuracy plt.plot(train_acc, 'k-', label='Train Set Accuracy') plt.plot(test_acc, 'r--', label='Test Set Accuracy') plt.title('Train and Test Accuracy') plt.xlabel('Generation') plt.ylabel('Accuracy') plt.legend(loc='lower right') plt.show()
Datenergebnisse:
Verlust = 0,845124Verlust = 0,658061Verlust = 0,471852
Verlust = 0,643469
Verlust = 0,672077
Kreuzentropieverlustdiagramm für 1500 Iterationen
Genauigkeitskarte des Testsatzes und Trainingssatzes nach 1500 Iterationen
Verwandte Empfehlungen:
Das obige ist der detaillierte Inhalt vonDetaillierte Erläuterung der Implementierung des logistischen Regressionsalgorithmus mit TensorFlow. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!