Heim > Artikel > Backend-Entwicklung > Implementierung des Python-Thread-Pools Threadpool
Dieser Artikel stellt hauptsächlich die Implementierung des Python-Threadpools Threadpool im Detail vor, der einen gewissen Referenzwert hat.
Dieser Artikel teilt Ihnen den gesamten Threadpool-Threadpool mit Ihre Referenz. Der spezifische Inhalt lautet wie folgt:
Stellen Sie zunächst die von Ihnen verwendeten Substantive vor:
Worker: Erstellen Sie beim Erstellen eines Thread-Pools Jobs entsprechend der angegebenen Anzahl von Threads und warten Sie darauf Aufgaben aus der Aufgabenwarteschlange abrufen;
Aufgaben (Anfragen): Das heißt, Aufgaben, die von Arbeitsthreads verarbeitet werden. Es können Tausende von Aufgaben vorhanden sein, aber es gibt nur wenige Arbeitsthreads. Aufgaben erstellen
Aufgabenwarteschlange (request_queue) über makeRequests: eine Warteschlange zum Speichern von Aufgaben, implementiert mit queue. Der Arbeitsthread erhält die Aufgabe zur Verarbeitung aus der Aufgabenwarteschlange.
Aufgabenverarbeitungsfunktion (aufrufbar): Nachdem der Arbeitsthread die Aufgabe erhalten hat, verarbeitet er die Aufgabe gezielt, indem er die Aufgabenverarbeitungsfunktion der Aufgabe aufruft (Anfrage). .callable_) und Rückgabe des Verarbeitungsergebnisses;
Aufgabenergebniswarteschlange (result_queue): Nachdem die Aufgabenverarbeitung abgeschlossen ist, wird das zurückgegebene Verarbeitungsergebnis in die Aufgabenergebniswarteschlange gestellt (einschließlich Ausnahmen);
Task-Ausnahmebehandlungsfunktion Oder Rückruf (exc_callback): Rufen Sie das Ergebnis aus der Task-Ergebniswarteschlange ab. Wenn eine Ausnahme festgelegt ist, müssen Sie den Ausnahmerückruf aufrufen, um die Ausnahme zu behandeln. Rückruf): Holen Sie sich das Ergebnis aus der Aufgabenergebniswarteschlange, um es weiterzuverarbeiten. Im vorherigen Abschnitt wurde die Installation und Verwendung des Threadpools vorgestellt. In diesem Abschnitt wird hauptsächlich der Hauptprozess der Threadpoolarbeit vorgestellt:(1) Thread-Pool-Erstellung
(2) Start des Arbeitsthreads (3) Erstellung der Aufgabe
(4) Aufgabe in den Thread-Pool verschieben
(6) Aufgabenendeverarbeitung
(7) Beenden des Arbeitsthreads
Das Folgende ist die Definition des Threadpools:
class ThreadPool: """A thread pool, distributing work requests and collecting results. See the module docstring for more information. """ def __init__(self, num_workers, q_size=0, resq_size=0, poll_timeout=5): pass def createWorkers(self, num_workers, poll_timeout=5): pass def dismissWorkers(self, num_workers, do_join=False): pass def joinAllDismissedWorkers(self): pass def putRequest(self, request, block=True, timeout=None): pass def poll(self, block=False): pass def wait(self): pass
1. Erstellung des Thread-Pools (ThreadPool(args))
task_pool=threadpool.ThreadPool(num_works)
task_pool=threadpool.ThreadPool(num_works) def __init__(self, num_workers, q_size=0, resq_size=0, poll_timeout=5): """Set up the thread pool and start num_workers worker threads. ``num_workers`` is the number of worker threads to start initially. If ``q_size > 0`` the size of the work *request queue* is limited and the thread pool blocks when the queue is full and it tries to put more work requests in it (see ``putRequest`` method), unless you also use a positive ``timeout`` value for ``putRequest``. If ``resq_size > 0`` the size of the *results queue* is limited and the worker threads will block when the queue is full and they try to put new results in it. .. warning: If you set both ``q_size`` and ``resq_size`` to ``!= 0`` there is the possibilty of a deadlock, when the results queue is not pulled regularly and too many jobs are put in the work requests queue. To prevent this, always set ``timeout > 0`` when calling ``ThreadPool.putRequest()`` and catch ``Queue.Full`` exceptions. """ self._requests_queue = Queue.Queue(q_size)#任务队列,通过threadpool.makeReuests(args)创建的任务都会放到此队列中 self._results_queue = Queue.Queue(resq_size)#字典,任务对应的任务执行结果</span> self.workers = []#工作线程list,通过self.createWorkers()函数内创建的工作线程会放到此工作线程list中 self.dismissedWorkers = []#被设置线程事件并且没有被join的工作线程 self.workRequests = {}#字典,记录任务被分配到哪个工作线程中</span> self.createWorkers(num_workers, poll_timeout)
q_size: Die Längenbeschränkung des Wenn die Länge der Warteschlange begrenzt ist, wird putRequest beim Aufrufen einer Aufgabe zum Hinzufügen einer Aufgabe weiterhin versuchen, Aufgaben hinzuzufügen, es sei denn, in putRequest() ist ein Timeout oder eine Blockierung festgelegt.
esq_size: Die Länge der Aufgabenergebniswarteschlange;pool_timeout: Wenn der Arbeitsthread aus der Anforderungswarteschlange liest, wird pool_timeout blockiert, wenn immer noch keine Anforderung vorliegt direkt;
Darunter Mitgliedsvariablen:
self._requests_queue: Aufgabenwarteschlange, erstellt durch threadpool.makeReuests(args) Aufgaben werden in diese Warteschlange gestellt;
self._results_queue: Wörterbuch, Aufgabenausführung entsprechend der Aufgabe
self.workRequests: Wörterbuch, das Aufgaben aufzeichnet, die an den Thread-Pool gesendet werden, die Struktur ist requestID:request. Die requestID ist die eindeutige Kennung der Aufgabe, die später eingeführt wird.
2. Start des Worker-Threads (self.createWorks(args))
Funktionsdefinition:
def createWorkers(self, num_workers, poll_timeout=5):
"""Add num_workers worker threads to the pool.
``poll_timout`` sets the interval in seconds (int or float) for how
ofte threads should check whether they are dismissed, while waiting for
requests.
"""
for i in range(num_workers):
self.workers.append(WorkerThread(self._requests_queue,
self._results_queue, poll_timeout=poll_timeout))
WorkerThread() erbt von Thread, der in Python integrierten Thread-Klasse, und stellt das erstellte WorkerThread-Objekt in die self.workers-Warteschlange. Werfen wir einen Blick auf die Definition der WorkerThread-Klasse:
Wie aus self.__init__(args) hervorgeht:class WorkerThread(threading.Thread): """Background thread connected to the requests/results queues. A worker thread sits in the background and picks up work requests from one queue and puts the results in another until it is dismissed. """ def __init__(self, requests_queue, results_queue, poll_timeout=5, **kwds): """Set up thread in daemonic mode and start it immediatedly. ``requests_queue`` and ``results_queue`` are instances of ``Queue.Queue`` passed by the ``ThreadPool`` class when it creates a new worker thread. """ threading.Thread.__init__(self, **kwds) self.setDaemon(1)# self._requests_queue = requests_queue#任务队列 self._results_queue = results_queue#任务结果队列 self._poll_timeout = poll_timeout#run函数中从任务队列中get任务时的超时时间,如果超时则继续while(true); self._dismissed = threading.Event()#线程事件,如果set线程事件则run会执行break,直接退出工作线程; self.start() def run(self): """Repeatedly process the job queue until told to exit.""" while True: if self._dismissed.isSet():#如果设置了self._dismissed则退出工作线程 # we are dismissed, break out of loop break # get next work request. If we don't get a new request from the # queue after self._poll_timout seconds, we jump to the start of # the while loop again, to give the thread a chance to exit. try: request = self._requests_queue.get(True, self._poll_timeout) except Queue.Empty:#尝从任务 队列self._requests_queue 中get任务,如果队列为空,则continue continue else: if self._dismissed.isSet():#检测此工作线程事件是否被set,如果被设置,意味着要结束此工作线程,那么就需要将取到的任务返回到任务队列中,并且退出线程 # we are dismissed, put back request in queue and exit loop self._requests_queue.put(request) break try:<span style="color:#如果线程事件没有被设置,那么执行任务处理函数request.callable,并将返回的result,压入到任务结果队列中 result = request.callable(*request.args, **request.kwds) self._results_queue.put((request, result)) except: request.exception = True self._results_queue.put((request, sys.exc_info()))#如果任务处理函数出现异常,则将异常压入到队列中 def dismiss(self):</span> """Sets a flag to tell the thread to exit when done with current job. """ self._dismissed.set()
Initialisierung Variablen:
self._resutls_queuqe,: Aufgabenergebniswarteschlange;
self._pool_timeout: Zeitüberschreitung beim Abrufen von Aufgaben aus der Aufgabenwarteschlange in der Ausführungsfunktion, Wenn das Zeitlimit überschritten wird, fahren Sie mit while(true) fort.self._dismissed: Thread-Ereignis. Wenn das Thread-Ereignis festgelegt ist, führt run den Arbeitsthread direkt aus.
Die Ausführungsschritte der Ausführungsfunktion von oben lauten wie folgt:
(1) Wenn self._dismissed festgelegt ist, beenden Sie die Arbeit Thread, andernfalls Schritt 2 ausführen
(3) Überprüfen Sie, ob Dieses Worker-Thread-Ereignis ist festgelegt. Um diesen Worker-Thread zu beenden, müssen Sie die abgerufene Aufgabe in die Aufgabenwarteschlange zurückgeben und den Thread verlassen. Wenn das Thread-Ereignis nicht gesetzt ist, wird die Aufgabenverarbeitungsfunktion request.callable ausgeführt und das zurückgegebene Ergebnis in die Aufgabenergebniswarteschlange verschoben. Wenn in der Aufgabenverarbeitungsfunktion eine Ausnahme auftritt, wird die Ausnahme in die Warteschlange verschoben. Springen Sie abschließend zu Schritt 4
(4), um die Schleife fortzusetzen und zu 1 zurückzukehren
到此工作线程创建完毕,根据设置的线程池线程数量,创建工作线程,工作线程从任务队列中get任务,进行任务处理,并将任务处理结果压入到任务结果队列中。
3、任务的创建(makeRequests)
任务的创建函数为threadpool.makeRequests(callable_,args_list,callback=None):
# utility functions def makeRequests(callable_, args_list, callback=None, exc_callback=_handle_thread_exception): """Create several work requests for same callable with different arguments. Convenience function for creating several work requests for the same callable where each invocation of the callable receives different values for its arguments. ``args_list`` contains the parameters for each invocation of callable. Each item in ``args_list`` should be either a 2-item tuple of the list of positional arguments and a dictionary of keyword arguments or a single, non-tuple argument. See docstring for ``WorkRequest`` for info on ``callback`` and ``exc_callback``. """ requests = [] for item in args_list: if isinstance(item, tuple): requests.append( WorkRequest(callable_, item[0], item[1], callback=callback, exc_callback=exc_callback) ) else: requests.append( WorkRequest(callable_, [item], None, callback=callback, exc_callback=exc_callback) ) return requests
其中创建任务的函数参数具体意义为下:
callable_:注册的任务处理函数,当任务被放到任务队列后,工作线程中获取到该任务的线程,会执行此 callable_
args_list:首先args_list是列表,列表元素类型为元组,元组中有两个元素item[0],item[1],item[0]为位置参 数,item[1]为字典类型关键字参数。列表中元组的个数,代表启动的任务个数,在使用的时候一般都为单个元组,即一个makerequest()创建一个任务。
callback:回调函数,在poll函数中调用(后面讲解此函数),callable_调用结束后,会就任务结果放入到任务结果队列中(self._resutls_queue),在poll函数中,当从self._resutls_queue队列中get某个结果后,会执行此callback(request,result),其中result是request任务返回的结果。
exc_callback:异常回调函数,在poll函数中,如果某个request对应有执行异常,那么会调用此异常回调。
创建完成任务后,返回创建的任务。
外层记录此任务,放入到任务列表中。
上面是创建任务的函数,下面讲解任务对象的结构:
class WorkRequest: """A request to execute a callable for putting in the request queue later. See the module function ``makeRequests`` for the common case where you want to build several ``WorkRequest`` objects for the same callable but with different arguments for each call. """ def __init__(self, callable_, args=None, kwds=None, requestID=None, callback=None, exc_callback=_handle_thread_exception): """Create a work request for a callable and attach callbacks. A work request consists of the a callable to be executed by a worker thread, a list of positional arguments, a dictionary of keyword arguments. A ``callback`` function can be specified, that is called when the results of the request are picked up from the result queue. It must accept two anonymous arguments, the ``WorkRequest`` object and the results of the callable, in that order. If you want to pass additional information to the callback, just stick it on the request object. You can also give custom callback for when an exception occurs with the ``exc_callback`` keyword parameter. It should also accept two anonymous arguments, the ``WorkRequest`` and a tuple with the exception details as returned by ``sys.exc_info()``. The default implementation of this callback just prints the exception info via ``traceback.print_exception``. If you want no exception handler callback, just pass in ``None``. ``requestID``, if given, must be hashable since it is used by ``ThreadPool`` object to store the results of that work request in a dictionary. It defaults to the return value of ``id(self)``. """ if requestID is None: self.requestID = id(self) else: try: self.requestID = hash(requestID) except TypeError: raise TypeError("requestID must be hashable.") self.exception = False self.callback = callback self.exc_callback = exc_callback self.callable = callable_ self.args = args or [] self.kwds = kwds or {} def __str__(self): return "<WorkRequest id=%s args=%r kwargs=%r exception=%s>" % \ (self.requestID, self.args, self.kwds, self.exception)
上面self.callback 以及self.exc_callback,和self.callable_ ,args,dwds都已经讲解,就不在啰嗦了。
其中有一个任务的全局唯一标识,即self.requestID,通过获取自身内存首地址作为自己的唯一标识id(self)
self.exception 初始化为False,如果执行self.callable()过程中出现异常,那么此变量会标设置为True。
至此,任务创建完毕,调用makeRequests()的上层记录有任务列表request_list.
4、任务的推送到线程池(putRequest)
上面小节中介绍了任务的创建,任务的个数可以成千上百,但是处理任务的线程数量只有我们在创建线程池的时候制定的线程数量来处理,指定的线程数量往往比任务的数量小得多,因此,每个线程必须处理多个任务。
本节介绍如何将创建的任务推送的线程池中,以让线程池由阻塞状态,获取任务,然后去处理任务。
任务的推送使用ThreadPool线程池类中的putRequest(self,request,block,timeout)来创建:
def putRequest(self, request, block=True, timeout=None): """Put work request into work queue and save its id for later.""" assert isinstance(request, WorkRequest) # don't reuse old work requests assert not getattr(request, 'exception', None) self._requests_queue.put(request, block, timeout) self.workRequests[request.requestID] = request
函数的主要作用就是将request任务,也就是上一小节中创建的任务,put到线程池的任务队列中(self._request_queue)。然后记录已经推送到线程池的任务,通过线程池的self.workReuests 字典来存储,结构为request.requestID:request。
至此,任务创建完成,并且已经将任务推送到线程池中。
5、线程处理任务
通过上一小节,任务已经推送到了线程中。在任务没有被推送到线程池中时,线程池中的线程都处在处在阻塞状态中,即在线程的self.run()函数中,一直处于一下状态:
try: request = self._requests_queue.get(True, self._poll_timeout) except Queue.Empty:#尝从任务 队列self._requests_queue 中get任务,如果队列为空,则continue continue
现在任务已经推送到线程池中,那么get任务将会正常返回,会执行下面的步骤:
def run(self): """Repeatedly process the job queue until told to exit.""" while True: if self._dismissed.isSet():#如果设置了self._dismissed则退出工作线程 # we are dismissed, break out of loop break # get next work request. If we don't get a new request from the # queue after self._poll_timout seconds, we jump to the start of # the while loop again, to give the thread a chance to exit. try: request = self._requests_queue.get(True, self._poll_timeout) except Queue.Empty:#尝从任务 队列self._requests_queue 中get任务,如果队列为空,则continue continue else: if self._dismissed.isSet():#检测此工作线程事件是否被set,如果被设置,意味着要结束此工作线程,那么就需要将取到的任务返回到任务队列中,并且退出线程 # we are dismissed, put back request in queue and exit loop self._requests_queue.put(request) break try:#如果线程事件没有被设置,那么执行任务处理函数request.callable,并将返回的result,压入到任务结果队列中 result = request.callable(*request.args, **request.kwds) self._results_queue.put((request, result)) except: request.exception = True self._results_queue.put((request, sys.exc_info()))#如果任务处理函数出现异常,则将异常压入到队列中
获取任务--->调用任务的处理函数callable()处理任务--->将任务request以及任务返回的结果压入到self.results_queue队列中---->如果任务处理函数异常,那么将任务异常标识设置为True,并将任务request以及任务异常压入到self.results_queue队列中---->再次返回获取任务
如果,在while循环过程中,外部设置了线程事件,即self._dismissed.isSet为True,那么意味着此线程将会结束处理任务,那么会将get到的任务返回的任务队列中,并且退出线程。
6、任务结束处理
上面小节中,介绍了线程池不断的get任务,并且不断的处理任务。那么每个任务结束之后我们该怎么处理呢,线程池提供了wait()以及poll()函数。
当我们把任务提交个线程池之后,我们会调用wait()来等待任务处理结束,结束后wait()将会返回,返回后我们可以进行下一步操作,例如重新创建任务,将任务继续推送到线程池中,或者结束线程池。结束线程池会在下一小节介绍,这一小节主要介绍wait()和poll()操作。
先来看看wait()操作:
def wait(self): """Wait for results, blocking until all have arrived.""" while 1: try: self.poll(True) except NoResultsPending: break
等待任务处理结束,在所有任务处理完成之前一直处于block阶段,如果self.poll()返回异常NoResultsPending异常,然后wait返回,任务处理结束。
下面看看poll函数:
def poll(self, block=False): """Process any new results in the queue.""" while True: # still results pending? if not self.workRequests: raise NoResultsPending # are there still workers to process remaining requests? elif block and not self.workers: raise NoWorkersAvailable try: # get back next results request, result = self._results_queue.get(block=block) # has an exception occured? if request.exception and request.exc_callback: request.exc_callback(request, result) # hand results to callback, if any if request.callback and not \ (request.exception and request.exc_callback): request.callback(request, result) del self.workRequests[request.requestID] except Queue.Empty: break
(1)首先,检测任务字典({request.requestID:request})是否为空,如果为空则抛出异常NoResultPending结束,否则到第2步;
(2)检测工作线程是否为空(如果某个线程的线程事件被设置,那么工作线程退出,并从self.workers中pop出),如果为空则抛出NoWorkerAvailable异常结束,否则进入第3步;
(3)从任务结果队列中get任务结果,如果抛出队列为空,那么break,返回,否则进入第4步;
(4)如果任务处理过程中出现异常,即设置了request.exception,并且设置了异常处理回调即request.exc_callback则执行异常回调,再回调中处理异常,返回后将任务从任务列表self.workRequests中移除,继续get任务,返回第1步。否则进入第5步;
(5)如果设置了任务结果回调即request.callback不为空,则执行任务结果回调即request.callbacl(request,result),并
将任务从任务列表self.workRequests中移除,继续get任务,返回第1步。
(6)重复进行上面的步骤直到抛出异常,或者任务队列为空,则poll返会;
至此抛出NoResultPending wait操作接受此异常后,至此wait()返回。
7、工作线程的退出
threadpool提供的工作线程退出的的操作有dismissWorkers()和joinAllDismissedWorker()操作:
def dismissWorkers(self, num_workers, do_join=False): """Tell num_workers worker threads to quit after their current task.""" dismiss_list = [] for i in range(min(num_workers, len(self.workers))): worker = self.workers.pop() worker.dismiss() dismiss_list.append(worker) if do_join: for worker in dismiss_list: worker.join() else: self.dismissedWorkers.extend(dismiss_list) def joinAllDismissedWorkers(self): """Perform Thread.join() on all worker threads that have been dismissed. """ for worker in self.dismissedWorkers: worker.join() self.dismissedWorkers = []
从dismissWorkers可看出,主要工作是从self.workers 工作线程中pop出指定的线程数量,并且设置此线程的线程事件,设置线程事件后,此线程self.run()函数,则会检测到此设置,并结束线程。
如果设置了在do_join,即设置了在此函数中join退出的线程,那么对退出的线程执行join操作。否则将pop出的线程放入到self.dismissedWorkers中,以等待joinAllDismissedWorkers操作去处理join线程。
8、总结
到此为止,threadpool线程池中所有的操作介绍完毕,其实现也做了具体的介绍。从上面可看出,线程池并没有那么复杂,只有几个简单的操作,主要是了解整个处理流程即可。
希望大家多多提出建议和意见。
相关推荐:
Das obige ist der detaillierte Inhalt vonImplementierung des Python-Thread-Pools Threadpool. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!