Heim >Backend-Entwicklung >Python-Tutorial >Python OpenCV erkennt und extrahiert die Zielfarbe

Python OpenCV erkennt und extrahiert die Zielfarbe

php中世界最好的语言
php中世界最好的语言Original
2018-04-09 14:37:3117960Durchsuche

Dieses Mal werde ich Ihnen Python OpenCV zum Erkennen und Extrahieren der Zielfarbe und die Vorsichtsmaßnahmen für Python OpenCV zum Erkennen und Extrahieren der Zielfarbe vorstellen Ein praktischer Fall, schauen wir uns das einmal an.

Ein Beispiel sieht so aus:

# -*- coding:utf-8 -*-
author = 'kingking'
version = '1.0'
date = '14/07/2017'
import cv2
import numpy as np
import time
if name == 'main':
 Img = cv2.imread('example.png')#读入一幅图像
 kernel_2 = np.ones((2,2),np.uint8)#2x2的卷积核
 kernel_3 = np.ones((3,3),np.uint8)#3x3的卷积核
 kernel_4 = np.ones((4,4),np.uint8)#4x4的卷积核
 if Img is not None:#判断图片是否读入
  HSV = cv2.cvtColor(Img, cv2.COLOR_BGR2HSV)#把BGR图像转换为HSV格式
  '''
  HSV模型中颜色的参数分别是:色调(H),饱和度(S),明度(V)
  下面两个值是要识别的颜色范围
  '''
  Lower = np.array([20, 20, 20])#要识别颜色的下限
  Upper = np.array([30, 255, 255])#要识别的颜色的上限
  #mask是把HSV图片中在颜色范围内的区域变成白色,其他区域变成黑色
  mask = cv2.inRange(HSV, Lower, Upper)
  #下面四行是用卷积进行滤波
  erosion = cv2.erode(mask,kernel_4,iterations = 1)
  erosion = cv2.erode(erosion,kernel_4,iterations = 1)
  dilation = cv2.dilate(erosion,kernel_4,iterations = 1)
  dilation = cv2.dilate(dilation,kernel_4,iterations = 1)
  #target是把原图中的非目标颜色区域去掉剩下的图像
  target = cv2.bitwise_and(Img, Img, mask=dilation)
  #将滤波后的图像变成二值图像放在binary中
  ret, binary = cv2.threshold(dilation,127,255,cv2.THRESH_BINARY) 
  #在binary中发现轮廓,轮廓按照面积从小到大排列
  contours, hierarchy = cv2.findContours(binary,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) 
  p=0
  for i in contours:#遍历所有的轮廓
   x,y,w,h = cv2.boundingRect(i)#将轮廓分解为识别对象的左上角坐标和宽、高
   #在图像上画上矩形(图片、左上角坐标、右下角坐标、颜色、线条宽度)
   cv2.rectangle(Img,(x,y),(x+w,y+h),(0,255,),3)
   #给识别对象写上标号
   font=cv2.FONT_HERSHEY_SIMPLEX
   cv2.putText(Img,str(p),(x-10,y+10), font, 1,(0,0,255),2)#加减10是调整字符位置
   p +=1
  print '黄色方块的数量是',p,'个'#终端输出目标数量
  cv2.imshow('target', target)
  cv2.imshow('Mask', mask)
  cv2.imshow("prod", dilation)
  cv2.imshow('Img', Img)
  cv2.imwrite('Img.png', Img)#将画上矩形的图形保存到当前目录  
 while True:
  Key = chr(cv2.waitKey(15) & 255)
  if Key == 'q':
   cv2.destroyAllWindows()
   break

Originalbild

Bild nach der Verarbeitung gespeichert

Ich glaube, Sie haben den Fall gelesen In diesem Artikel Nachdem Sie die Methode gemeistert haben, lesen Sie bitte andere verwandte Artikel auf der chinesischen PHP-Website, um weitere spannende Inhalte zu erhalten!

Empfohlene Lektüre:

Implementierung des Python-Batch-Lesens von Bildern und deren Speicherung in der Datenbank

Python 3.5 in Windows10 So installieren Sie opencv

Das obige ist der detaillierte Inhalt vonPython OpenCV erkennt und extrahiert die Zielfarbe. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn