Heim >Backend-Entwicklung >Python-Tutorial >[译]Das Python-Tutorial#Datenstrukturen

[译]Das Python-Tutorial#Datenstrukturen

PHP中文网
PHP中文网Original
2017-07-05 18:13:371363Durchsuche

[Übersetzung]Das Python-Tutorial#Datenstrukturen

5.1 Datenstrukturen

In diesem Kapitel werden einige der zuvor eingeführten Inhalte detailliert beschrieben und es werden auch einige neue Inhalte vorgestellt.

5.1 Mehr zu Listen

Der Listendatentyp verfügt über weitere Methoden. Im Folgenden sind alle Methoden des Listenobjekts aufgeführt:

  • list.append(x)
    Fügt ein neues Element am Ende der Liste hinzu, entsprechend a[len(a):] = [x]

  • list.extend(iterable)
    Erweitern Sie die Liste, indem Sie alle Elemente im iterierbaren Objekt hinzufügen, entsprechend a[len(a):] = iterable

  • list.insert(i, x)
    Fügt ein Element an der angegebenen Position ein. Der erste Parameter ist der Elementindex, der vor diesem Index eingefügt wird, sodass a.insert(0, x) am Anfang der Liste eingefügt wird und a.insert(len(a), x) äquivalent zu a.append(x) ist.

  • list.remove(x)
    Entfernt das erste Element mit dem Wert x aus der Liste. Wenn x nicht vorhanden ist, löst die Methode eine Ausnahme (ValueErrorException)

  • aus
  • list.pop([i])
    Entfernt das Element an der angegebenen Position aus der Liste und kehrt zurück. Wenn kein Index angegeben ist, entfernt a.pop() das letzte Element in der Liste und gibt es zurück. (Die eckigen Klammern um i in der Methodensignatur zeigen an, dass der Parameter optional ist, anstatt an dieser Position eine eckige Klammer zu schreiben. Diese Notation wird häufig in der Python-Bibliotheksreferenz verwendet.)

  • list.clear()
    Alle Elemente aus der Liste entfernen, entspricht del a[:]

  • list.index(x[, start[, end]])
    Gibt den 0-basierten Index des ersten Elements mit dem Wert x zurück oder löst eine x-Ausnahme aus, wenn ValueError nicht vorhanden ist.
    Die optionalen Argumente start und end werden als Slice-Notation interpretiert und dienen dazu, die Suche auf eine bestimmte Unterliste der Liste einzuschränken. Der zurückgegebene Index ist relativ zum Index der vollständigen Liste, nicht relativ zum Argument start.

  • list.count(x)
    Gibt zurück, wie oft x in der Liste

  • erscheint
  • list.sort(key=None, reverse=False)
    Sortieren Sie alle Elemente in der Liste (Parameter werden verwendet, um die Sortierung anzupassen, siehe sorted() für weitere Informationen)

  • list.reverse()
    Listenelemente umkehren

  • list.copy()
    Gibt eine flache Kopie der Liste zurück, entsprechend a[:]

Das Folgende ist ein Beispiel, das die Listenmethode demonstriert:

<code class="sourceCode python"><span class="op">>>></span> fruits <span class="op">=</span> [<span class="st">'orange'</span>, <span class="st">'apple'</span>, <span class="st">'pear'</span>, <span class="st">'banana'</span>, <span class="st">'kiwi'</span>, <span class="st">'apple'</span>, <span class="st">'banana'</span>]
<span class="op">>>></span> fruits.count(<span class="st">'apple'</span>)
<span class="dv">2</span>
<span class="op">>>></span> fruits.count(<span class="st">'tangerine'</span>)
<span class="dv">0</span>
<span class="op">>>></span> fruits.index(<span class="st">'banana'</span>)
<span class="dv">3</span>
<span class="op">>>></span> fruits.index(<span class="st">'banana'</span>, <span class="dv">4</span>)  <span class="co"># Find next banana starting a position 4</span>
<span class="dv">6</span>
<span class="op">>>></span> fruits.reverse()
<span class="op">>>></span> fruits
[<span class="st">'banana'</span>, <span class="st">'apple'</span>, <span class="st">'kiwi'</span>, <span class="st">'banana'</span>, <span class="st">'pear'</span>, <span class="st">'apple'</span>, <span class="st">'orange'</span>]
<span class="op">>>></span> fruits.append(<span class="st">'grape'</span>)
<span class="op">>>></span> fruits
[<span class="st">'banana'</span>, <span class="st">'apple'</span>, <span class="st">'kiwi'</span>, <span class="st">'banana'</span>, <span class="st">'pear'</span>, <span class="st">'apple'</span>, <span class="st">'orange'</span>, <span class="st">'grape'</span>]
<span class="op">>>></span> fruits.sort()
<span class="op">>>></span> fruits
[<span class="st">'apple'</span>, <span class="st">'apple'</span>, <span class="st">'banana'</span>, <span class="st">'banana'</span>, <span class="st">'grape'</span>, <span class="st">'kiwi'</span>, <span class="st">'orange'</span>, <span class="st">'pear'</span>]
<span class="op">>>></span> fruits.pop()
<span class="co">'pear'</span></code>

Zum Beispiel insert, reverse oder sort ändern Sie nur die Liste, drucken aber nicht den Rückgabewert. Sie geben den Standardwert None[1] zurück. Dies ist ein Designprinzip, das für die veränderlichen Datenstrukturen von Python gilt.

5.1.1 Listen als Stapel verwenden

Listenmethoden machen es sehr einfach, es als Stapel zu verwenden, wobei das letzte dem Stapel hinzugefügte Element als erstes freigegeben wird (last in, first out). Verwenden Sie die Methode append(), um Elemente oben im Stapel hinzuzufügen, und verwenden Sie pop() ohne Parameter, um das oberste Element vom Stapel zu entfernen. Beispiel:

<code class="sourceCode python"><span class="op">>>></span> stack <span class="op">=</span> [<span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span>]
<span class="op">>>></span> stack.append(<span class="dv">6</span>)
<span class="op">>>></span> stack.append(<span class="dv">7</span>)
<span class="op">>>></span> stack
[<span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span>, <span class="dv">6</span>, <span class="dv">7</span>]
<span class="op">>>></span> stack.pop()
<span class="dv">7</span>
<span class="op">>>></span> stack
[<span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span>, <span class="dv">6</span>]
<span class="op">>>></span> stack.pop()
<span class="dv">6</span>
<span class="op">>>></span> stack.pop()
<span class="dv">5</span>
<span class="op">>>></span> stack
[<span class="dv">3</span>, <span class="dv">4</span>]</code>

5.1.2 Listen als Warteschlangen verwenden

Es ist auch möglich, eine Liste als Warteschlange zu verwenden. Die zuerst in der Warteschlange hinzugefügten Elemente werden zuerst freigegeben (First In, First Out). Die Verwendung einer Liste auf diese Weise ist jedoch sehr ineffizient. Denn das Hinzufügen und Entfernen von Elementen am Ende der Liste geht schnell, das Einfügen oder Entfernen von Elementen am Anfang der Liste hingegen langsam (da alle anderen Elemente um ein Bit verschoben werden müssen).

Das speziell entwickelte collections.deque fügt Elemente an beiden Enden schnell hinzu und löscht sie, und Sie können damit Warteschlangen implementieren. Beispiel:

<code class="sourceCode python"><span class="op">>>></span> <span class="im">from</span> collections <span class="im">import</span> deque
<span class="op">>>></span> queue <span class="op">=</span> deque([<span class="st">"Eric"</span>, <span class="st">"John"</span>, <span class="st">"Michael"</span>])
<span class="op">>>></span> queue.append(<span class="st">"Terry"</span>)           <span class="co"># Terry arrives</span>
<span class="op">>>></span> queue.append(<span class="st">"Graham"</span>)          <span class="co"># Graham arrives</span>
<span class="op">>>></span> queue.popleft()                 <span class="co"># The first to arrive now leaves</span>
<span class="co">'Eric'</span>
<span class="op">>>></span> queue.popleft()                 <span class="co"># The second to arrive now leaves</span>
<span class="co">'John'</span>
<span class="op">>>></span> queue                           <span class="co"># Remaining queue in order of arrival</span>
deque([<span class="st">'Michael'</span>, <span class="st">'Terry'</span>, <span class="st">'Graham'</span>])</code>

5.1.3 Listenverständnisse

Listenverständnisse bieten eine prägnante Möglichkeit, Listen zu erstellen. Die allgemeinen Anwendungsmethoden sind: Erstellen einer neuen Liste, wobei die Listenelemente das Ergebnis von Operationen an anderen Sequenzen oder iterierbaren Objekten sind, oder Erstellen einer Teilsequenz, deren Elemente bestimmte Bedingungen erfüllen.

Angenommen, Sie möchten eine quadratische Liste erstellen:

<code class="sourceCode python"><span class="op">>>></span> squares <span class="op">=</span> []
<span class="op">>>></span> <span class="cf">for</span> x <span class="op">in</span> <span class="bu">range</span>(<span class="dv">10</span>):
...     squares.append(x<span class="op">**</span><span class="dv">2</span>)
...
<span class="op">>>></span> squares
[<span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">4</span>, <span class="dv">9</span>, <span class="dv">16</span>, <span class="dv">25</span>, <span class="dv">36</span>, <span class="dv">49</span>, <span class="dv">64</span>, <span class="dv">81</span>]</code>

Beachten Sie, dass durch das oben Gesagte eine Variable mit dem Namen x erstellt (oder neu geschrieben) wird, die auch nach Ende der Schleife noch vorhanden ist. Verwenden Sie die folgende Methode, um eine quadratische Liste ohne Nebenwirkungen zu erstellen:

<code class="sourceCode python">squares <span class="op">=</span> <span class="bu">list</span>(<span class="bu">map</span>(<span class="kw">lambda</span> x: x<span class="op">**</span><span class="dv">2</span>, <span class="bu">range</span>(<span class="dv">10</span>)))</code>

Oder usw. verwendet für:

<code class="sourceCode python">squares <span class="op">=</span> [x<span class="op">**</span><span class="dv">2</span> <span class="cf">for</span> x <span class="op">in</span> <span class="bu">range</span>(<span class="dv">10</span>)]</code>

Auf diese Weise ist es prägnanter und leichter zu lesen.

, gefolgt von einer for-Klausel, gefolgt von null oder mehr for-Klauseln oder Ausdrücken in if-Klauseln plus eckigen Klammern, bilden ein Listenverständnis. Das Rückgabeergebnis ist eine neue Liste, deren Elemente die Berechnungsergebnisse der for- und if-Klauseln im Ausdruck sind. Das folgende Listenverständnis kombiniert beispielsweise ungleiche Elemente in zwei Listen:

<code class="sourceCode python"><span class="op">>>></span> [(x, y) <span class="cf">for</span> x <span class="op">in</span> [<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">3</span>] <span class="cf">for</span> y <span class="op">in</span> [<span class="dv">3</span>,<span class="dv">1</span>,<span class="dv">4</span>] <span class="cf">if</span> x <span class="op">!=</span> y]
[(<span class="dv">1</span>, <span class="dv">3</span>), (<span class="dv">1</span>, <span class="dv">4</span>), (<span class="dv">2</span>, <span class="dv">3</span>), (<span class="dv">2</span>, <span class="dv">1</span>), (<span class="dv">2</span>, <span class="dv">4</span>), (<span class="dv">3</span>, <span class="dv">1</span>), (<span class="dv">3</span>, <span class="dv">4</span>)]</code>

entspricht:

<code class="sourceCode python"><span class="op">>>></span> combs <span class="op">=</span> []
<span class="op">>>></span> <span class="cf">for</span> x <span class="op">in</span> [<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">3</span>]:
...     <span class="cf">for</span> y <span class="op">in</span> [<span class="dv">3</span>,<span class="dv">1</span>,<span class="dv">4</span>]:
...         <span class="cf">if</span> x <span class="op">!=</span> y:
...             combs.append((x, y))
...
<span class="op">>>></span> combs
[(<span class="dv">1</span>, <span class="dv">3</span>), (<span class="dv">1</span>, <span class="dv">4</span>), (<span class="dv">2</span>, <span class="dv">3</span>), (<span class="dv">2</span>, <span class="dv">1</span>), (<span class="dv">2</span>, <span class="dv">4</span>), (<span class="dv">3</span>, <span class="dv">1</span>), (<span class="dv">3</span>, <span class="dv">4</span>)]</code>

注意上面两个代码段中forif语句的顺序是相同的。

如果表达式是一个元组(如上所示的(x, y)),必须将其加上括号。

<code class="sourceCode python"><span class="op">>>></span> vec <span class="op">=</span> [<span class="op">-</span><span class="dv">4</span>, <span class="op">-</span><span class="dv">2</span>, <span class="dv">0</span>, <span class="dv">2</span>, <span class="dv">4</span>]
<span class="op">>>></span> <span class="co"># create a new list with the values doubled</span>
<span class="op">>>></span> [x<span class="op">*</span><span class="dv">2</span> <span class="cf">for</span> x <span class="op">in</span> vec]
[<span class="op">-</span><span class="dv">8</span>, <span class="op">-</span><span class="dv">4</span>, <span class="dv">0</span>, <span class="dv">4</span>, <span class="dv">8</span>]
<span class="op">>>></span> <span class="co"># filter the list to exclude negative numbers</span>
<span class="op">>>></span> [x <span class="cf">for</span> x <span class="op">in</span> vec <span class="cf">if</span> x <span class="op">>=</span> <span class="dv">0</span>]
[<span class="dv">0</span>, <span class="dv">2</span>, <span class="dv">4</span>]
<span class="op">>>></span> <span class="co"># apply a function to all the elements</span>
<span class="op">>>></span> [<span class="bu">abs</span>(x) <span class="cf">for</span> x <span class="op">in</span> vec]
[<span class="dv">4</span>, <span class="dv">2</span>, <span class="dv">0</span>, <span class="dv">2</span>, <span class="dv">4</span>]
<span class="op">>>></span> <span class="co"># call a method on each element</span>
<span class="op">>>></span> freshfruit <span class="op">=</span> [<span class="st">'  banana'</span>, <span class="st">'  loganberry '</span>, <span class="st">'passion fruit  '</span>]
<span class="op">>>></span> [weapon.strip() <span class="cf">for</span> weapon <span class="op">in</span> freshfruit]
[<span class="st">'banana'</span>, <span class="st">'loganberry'</span>, <span class="st">'passion fruit'</span>]
<span class="op">>>></span> <span class="co"># create a list of 2-tuples like (number, square)</span>
<span class="op">>>></span> [(x, x<span class="op">**</span><span class="dv">2</span>) <span class="cf">for</span> x <span class="op">in</span> <span class="bu">range</span>(<span class="dv">6</span>)]
[(<span class="dv">0</span>, <span class="dv">0</span>), (<span class="dv">1</span>, <span class="dv">1</span>), (<span class="dv">2</span>, <span class="dv">4</span>), (<span class="dv">3</span>, <span class="dv">9</span>), (<span class="dv">4</span>, <span class="dv">16</span>), (<span class="dv">5</span>, <span class="dv">25</span>)]
<span class="op">>>></span> <span class="co"># the tuple must be parenthesized, otherwise an error is raised</span>
<span class="op">>>></span> [x, x<span class="op">**</span><span class="dv">2</span> <span class="cf">for</span> x <span class="op">in</span> <span class="bu">range</span>(<span class="dv">6</span>)]
  File <span class="st">"<stdin>"</span>, line <span class="dv">1</span>, <span class="op">in</span> <span class="op"><</span>module<span class="op">></span>
    [x, x<span class="op">**</span><span class="dv">2</span> <span class="cf">for</span> x <span class="op">in</span> <span class="bu">range</span>(<span class="dv">6</span>)]
               <span class="op">^</span>
<span class="pp">SyntaxError</span>: invalid syntax
<span class="op">>>></span> <span class="co"># flatten a list using a listcomp with two 'for'</span>
<span class="op">>>></span> vec <span class="op">=</span> [[<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">3</span>], [<span class="dv">4</span>,<span class="dv">5</span>,<span class="dv">6</span>], [<span class="dv">7</span>,<span class="dv">8</span>,<span class="dv">9</span>]]
<span class="op">>>></span> [num <span class="cf">for</span> elem <span class="op">in</span> vec <span class="cf">for</span> num <span class="op">in</span> elem]
[<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span>, <span class="dv">6</span>, <span class="dv">7</span>, <span class="dv">8</span>, <span class="dv">9</span>]</code>

列表推导式可以包含复杂的表达式甚至嵌套函数:

<code class="sourceCode python"><span class="op">>>></span> <span class="im">from</span> math <span class="im">import</span> pi
<span class="op">>>></span> [<span class="bu">str</span>(<span class="bu">round</span>(pi, i)) <span class="cf">for</span> i <span class="op">in</span> <span class="bu">range</span>(<span class="dv">1</span>, <span class="dv">6</span>)]
[<span class="st">'3.1'</span>, <span class="st">'3.14'</span>, <span class="st">'3.142'</span>, <span class="st">'3.1416'</span>, <span class="st">'3.14159'</span>]</code>

5.1.4 Nested List Comprehensions

列表推导式开头的表达式可以是任意表达式,包括另一个列表推导式。

考虑以下示例,一个包含3个长度为4的列表的列表实现了3x4的矩阵:

<code class="sourceCode python">matrix <span class="op">=</span> [
    [<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>, <span class="dv">4</span>],
    [<span class="dv">5</span>, <span class="dv">6</span>, <span class="dv">7</span>, <span class="dv">8</span>],
    [<span class="dv">9</span>, <span class="dv">10</span>, <span class="dv">11</span>, <span class="dv">12</span>],
]</code>

以下列表推导式反转行列:

<code class="sourceCode python"><span class="op">>>></span> [[row[i] <span class="cf">for</span> row <span class="op">in</span> matrix] <span class="cf">for</span> i <span class="op">in</span> <span class="bu">range</span>(<span class="dv">4</span>)]
[[<span class="dv">1</span>, <span class="dv">5</span>, <span class="dv">9</span>], [<span class="dv">2</span>, <span class="dv">6</span>, <span class="dv">10</span>], [<span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">11</span>], [<span class="dv">4</span>, <span class="dv">8</span>, <span class="dv">12</span>]]</code>

前面的章节提到,嵌套的列表推导式是在其后跟随的for的上下文中求值的,因此这个示例等同于:

<code class="sourceCode python"><span class="op">>>></span> transposed <span class="op">=</span> []
<span class="op">>>></span> <span class="cf">for</span> i <span class="op">in</span> <span class="bu">range</span>(<span class="dv">4</span>):
...     transposed.append([row[i] <span class="cf">for</span> row <span class="op">in</span> matrix])
...
<span class="op">>>></span> transposed
[[<span class="dv">1</span>, <span class="dv">5</span>, <span class="dv">9</span>], [<span class="dv">2</span>, <span class="dv">6</span>, <span class="dv">10</span>], [<span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">11</span>], [<span class="dv">4</span>, <span class="dv">8</span>, <span class="dv">12</span>]]</code>

依次等同于:

<code class="sourceCode python"><span class="op">>>></span> transposed <span class="op">=</span> []
<span class="op">>>></span> <span class="cf">for</span> i <span class="op">in</span> <span class="bu">range</span>(<span class="dv">4</span>):
...     <span class="co"># the following 3 lines implement the nested listcomp</span>
...     transposed_row <span class="op">=</span> []
...     <span class="cf">for</span> row <span class="op">in</span> matrix:
...         transposed_row.append(row[i])
...     transposed.append(transposed_row)
<span class="op">>>></span> transposed
[[<span class="dv">1</span>, <span class="dv">5</span>, <span class="dv">9</span>], [<span class="dv">2</span>, <span class="dv">6</span>, <span class="dv">10</span>], [<span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">11</span>], [<span class="dv">4</span>, <span class="dv">8</span>, <span class="dv">12</span>]]</code>

在实践中,应该选择built-in函数来复合流程语句。在以上的用例中zip()函数更有用:

<code class="sourceCode python"><span class="op">>>></span> <span class="bu">list</span>(<span class="bu">zip</span>(<span class="op">*</span>matrix))
[(<span class="dv">1</span>, <span class="dv">5</span>, <span class="dv">9</span>), (<span class="dv">2</span>, <span class="dv">6</span>, <span class="dv">10</span>), (<span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">11</span>), (<span class="dv">4</span>, <span class="dv">8</span>, <span class="dv">12</span>)]</code>

参见 Unpacking Argument Lists了解关于上面*使用的更多详细信息。

5.2 The del statement

在提供列表索引而不是值的情况下,有一种方法可以移除列表中的元素:del语句。这种方式与返回值的pop()方法不同。del语句也可以用来移除部分列表或者清除整个列表(之前使用将空的列表赋值给列表片段的方式实现)。示例:

<code class="sourceCode python"><span class="op">>>></span> a <span class="op">=</span> [<span class="op">-</span><span class="dv">1</span>, <span class="dv">1</span>, <span class="fl">66.25</span>, <span class="dv">333</span>, <span class="dv">333</span>, <span class="fl">1234.5</span>]
<span class="op">>>></span> <span class="kw">del</span> a[<span class="dv">0</span>]
<span class="op">>>></span> a
[<span class="dv">1</span>, <span class="fl">66.25</span>, <span class="dv">333</span>, <span class="dv">333</span>, <span class="fl">1234.5</span>]
<span class="op">>>></span> <span class="kw">del</span> a[<span class="dv">2</span>:<span class="dv">4</span>]
<span class="op">>>></span> a
[<span class="dv">1</span>, <span class="fl">66.25</span>, <span class="fl">1234.5</span>]
<span class="op">>>></span> <span class="kw">del</span> a[:]
<span class="op">>>></span> a
[]</code>

del也可以用来删除整个变量:

<code class="sourceCode python"><span class="op">>>></span> <span class="kw">del</span> a</code>

此后引用名字a会抛出异常(至少在其他值赋值给名字a之前)。接下来会有更多del的使用

5.3 Tuples and Sequences

列表和字符串有很多常用属性,比如索引和切片操作。它们是序列数据类型(参见 Sequence Types - list, tuple, range)的两种。Python是一种不断进化的语言,其他的序列类型也可以加入。元组是另一种标准的序列数据类型。

元组包含若干由逗号分隔的值,示例:

<code class="sourceCode python"><span class="op">>>></span> t <span class="op">=</span> <span class="dv">12345</span>, <span class="dv">54321</span>, <span class="st">'hello!'</span>
<span class="op">>>></span> t[<span class="dv">0</span>]
<span class="dv">12345</span>
<span class="op">>>></span> t
(<span class="dv">12345</span>, <span class="dv">54321</span>, <span class="st">'hello!'</span>)
<span class="op">>>></span> <span class="co"># Tuples may be nested:</span>
... u <span class="op">=</span> t, (<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span>)
<span class="op">>>></span> u
((<span class="dv">12345</span>, <span class="dv">54321</span>, <span class="st">'hello!'</span>), (<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span>))
<span class="op">>>></span> <span class="co"># Tuples are immutable:</span>
... t[<span class="dv">0</span>] <span class="op">=</span> <span class="dv">88888</span>
Traceback (most recent call last):
  File <span class="st">"<stdin>"</span>, line <span class="dv">1</span>, <span class="op">in</span> <span class="op"><</span>module<span class="op">></span>
<span class="pp">TypeError</span>: <span class="st">'tuple'</span> <span class="bu">object</span> does <span class="op">not</span> support item assignment
<span class="op">>>></span> <span class="co"># but they can contain mutable objects:</span>
... v <span class="op">=</span> ([<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>], [<span class="dv">3</span>, <span class="dv">2</span>, <span class="dv">1</span>])
<span class="op">>>></span> v
([<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>], [<span class="dv">3</span>, <span class="dv">2</span>, <span class="dv">1</span>])</code>

可见,输出的元组总是放在圆括号中,以便于嵌套的元组可以被正确解析;虽然圆括号总是必须的(如果元组是其他更大表达式的一部分),但是在输入元组的时候可以选择使用圆括号。不能对元组的单个项赋值,但是可以创建包含如列表的可变对象的元组。

虽然元组和列表有些相似,但是他们通常以不同的目的,用于不同的场景。元组是不可变的,通常包含不同类型的元素,可以通过拆包操作(参见后续章节)或者索引(或者当元组是命名元组时,甚至可以通过属性来访问)来访问。列表是可变的,通常其元素也是不同类型的,可以通过对列表的迭代访问元素。

构建包含零个或者1个项的元组比较特殊:一种额外的奇怪语法可以适用于这种情况。空元组由一对空的圆括号创建;一个元素的元组由一个跟着逗号的值创建(在圆括号中放入单个值是不够的。译注:这种情况:(1)表示整数而不是元组,使用(1, )表示元组也是可行的)。丑陋但是有效。示例:

<code class="sourceCode python"><span class="op">>>></span> empty <span class="op">=</span> ()
<span class="op">>>></span> singleton <span class="op">=</span> <span class="st">'hello'</span>,    <span class="co"># <-- note trailing comma</span>
<span class="op">>>></span> <span class="bu">len</span>(empty)
<span class="dv">0</span>
<span class="op">>>></span> <span class="bu">len</span>(singleton)
<span class="dv">1</span>
<span class="op">>>></span> singleton
(<span class="st">'hello'</span>,)</code>

语句t = 12345, 54321, 'hello!'是封装元组的一个示例:值12345, 54321hello!被封装到了一个元组中。逆向操作也是可行的:

<code class="sourceCode python"><span class="op">>>></span> x, y, z <span class="op">=</span> t</code>

非常恰当地称之为序列解包,适用于任何在等号右边的序列(译注:等号右操作数)。序列解包要求等号左边待赋值的变量数量与序列包含元素数目相同。注意多重赋值只是封装元组和序列解包的结合(译注:多重赋值:i, j = 1, 2

5.4 Set

Python也包含实现了集合的数据类型。集合是无序不重复的元素集。基本功能包括成员关系测试和重复实体消除。集合对象也支持并集,交集,差集以及对称差集等数学操作。

可以使用花括号和set()函数创建集合。谨记:创建空集合必须使用set函数,不能使用{},后者用于创建空字典。

以下是简单示范:

<code class="sourceCode python"><span class="op">>>></span> basket <span class="op">=</span> {<span class="st">'apple'</span>, <span class="st">'orange'</span>, <span class="st">'apple'</span>, <span class="st">'pear'</span>, <span class="st">'orange'</span>, <span class="st">'banana'</span>}
<span class="op">>>></span> <span class="bu">print</span>(basket)                      <span class="co"># show that duplicates have been removed</span>
{<span class="st">'orange'</span>, <span class="st">'banana'</span>, <span class="st">'pear'</span>, <span class="st">'apple'</span>}
<span class="op">>>></span> <span class="st">'orange'</span> <span class="op">in</span> basket                 <span class="co"># fast membership testing</span>
<span class="va">True</span>
<span class="op">>>></span> <span class="st">'crabgrass'</span> <span class="op">in</span> basket
<span class="va">False</span>

<span class="op">>>></span> <span class="co"># Demonstrate set operations on unique letters from two words</span>
...
<span class="op">>>></span> a <span class="op">=</span> <span class="bu">set</span>(<span class="st">'abracadabra'</span>)
<span class="op">>>></span> b <span class="op">=</span> <span class="bu">set</span>(<span class="st">'alacazam'</span>)
<span class="op">>>></span> a                                  <span class="co"># unique letters in a</span>
{<span class="st">'a'</span>, <span class="st">'r'</span>, <span class="st">'b'</span>, <span class="st">'c'</span>, <span class="st">'d'</span>}
<span class="op">>>></span> a <span class="op">-</span> b                              <span class="co"># letters in a but not in b</span>
{<span class="st">'r'</span>, <span class="st">'d'</span>, <span class="st">'b'</span>}
<span class="op">>>></span> a <span class="op">|</span> b                              <span class="co"># letters in a or b or both</span>
{<span class="st">'a'</span>, <span class="st">'c'</span>, <span class="st">'r'</span>, <span class="st">'d'</span>, <span class="st">'b'</span>, <span class="st">'m'</span>, <span class="st">'z'</span>, <span class="st">'l'</span>}
<span class="op">>>></span> a <span class="op">&</span> b                              <span class="co"># letters in both a and b</span>
{<span class="st">'a'</span>, <span class="st">'c'</span>}
<span class="op">>>></span> a <span class="op">^</span> b                              <span class="co"># letters in a or b but not both</span>
{<span class="st">'r'</span>, <span class="st">'d'</span>, <span class="st">'b'</span>, <span class="st">'m'</span>, <span class="st">'z'</span>, <span class="st">'l'</span>}</code>

与列表推导式相同,Python也支持集合推导式:

<code class="sourceCode python"><span class="op">>>></span> a <span class="op">=</span> {x <span class="cf">for</span> x <span class="op">in</span> <span class="st">'abracadabra'</span> <span class="cf">if</span> x <span class="op">not</span> <span class="op">in</span> <span class="st">'abc'</span>}
<span class="op">>>></span> a
{<span class="st">'r'</span>, <span class="st">'d'</span>}</code>

5.5 Dictionaries

另一个内嵌入Python中的数据结构是字典(参见 Mapping Types - dict)。字典在其他一些语言中被称为“联合存储”或者“联合数组”。与序列不同,序列以一系列数字作索引,字典以作索引,键可以是任何不可变类型;通常使用字符串和数字作为键。只包含字符串,数字或者其他元组的元组也可以作为键;直接或者间接包含可变对象的元组不能作为键。因为列表可以使用索引赋值,切片赋值或者append()以及extend()等方法改变自身,所以列表不能作为键。

最好的理解字典的方式是将其认为是键值对的无序集合,同一集合中键唯一。一对花括号创建空字典:{}。在花括号中放置由逗号分隔键值对列表可以为字典添加初始键值对;这也是字典输出的格式。

字典提供的主要操作是:使用键存储值以及取值。可以使用del删除一个键值对。如果使用已经存在的键来存储值,那么与键关联的旧值会被重写。使用不存在的键来取值会抛出异常。

在字典上执行list(d.keys())返回字典所有键的无序列表(使用sorted(d.keys())使其有序)[2]。使用关键字in检查键在字典中是否存在。

以下是使用字典的示例:

<code class="sourceCode python"><span class="op">>>></span> tel <span class="op">=</span> {<span class="st">'jack'</span>: <span class="dv">4098</span>, <span class="st">'sape'</span>: <span class="dv">4139</span>}
<span class="op">>>></span> tel[<span class="st">'guido'</span>] <span class="op">=</span> <span class="dv">4127</span>
<span class="op">>>></span> tel
{<span class="st">'sape'</span>: <span class="dv">4139</span>, <span class="st">'guido'</span>: <span class="dv">4127</span>, <span class="st">'jack'</span>: <span class="dv">4098</span>}
<span class="op">>>></span> tel[<span class="st">'jack'</span>]
<span class="dv">4098</span>
<span class="op">>>></span> <span class="kw">del</span> tel[<span class="st">'sape'</span>]
<span class="op">>>></span> tel[<span class="st">'irv'</span>] <span class="op">=</span> <span class="dv">4127</span>
<span class="op">>>></span> tel
{<span class="st">'guido'</span>: <span class="dv">4127</span>, <span class="st">'irv'</span>: <span class="dv">4127</span>, <span class="st">'jack'</span>: <span class="dv">4098</span>}
<span class="op">>>></span> <span class="bu">list</span>(tel.keys())
[<span class="st">'irv'</span>, <span class="st">'guido'</span>, <span class="st">'jack'</span>]
<span class="op">>>></span> <span class="bu">sorted</span>(tel.keys())
[<span class="st">'guido'</span>, <span class="st">'irv'</span>, <span class="st">'jack'</span>]
<span class="op">>>></span> <span class="st">'guido'</span> <span class="op">in</span> tel
<span class="va">True</span>
<span class="op">>>></span> <span class="st">'jack'</span> <span class="op">not</span> <span class="op">in</span> tel
<span class="va">False</span></code>

dict()构造器直接使用键值对序列构造字典:

<code class="sourceCode python"><span class="op">>>></span> <span class="bu">dict</span>([(<span class="st">'sape'</span>, <span class="dv">4139</span>), (<span class="st">'guido'</span>, <span class="dv">4127</span>), (<span class="st">'jack'</span>, <span class="dv">4098</span>)])
{<span class="st">'sape'</span>: <span class="dv">4139</span>, <span class="st">'jack'</span>: <span class="dv">4098</span>, <span class="st">'guido'</span>: <span class="dv">4127</span>}</code>

此外,字典推导式可以从任意键值表达式中创建字典:

<code class="sourceCode python"><span class="op">>>></span> {x: x<span class="op">**</span><span class="dv">2</span> <span class="cf">for</span> x <span class="op">in</span> (<span class="dv">2</span>, <span class="dv">4</span>, <span class="dv">6</span>)}
{<span class="dv">2</span>: <span class="dv">4</span>, <span class="dv">4</span>: <span class="dv">16</span>, <span class="dv">6</span>: <span class="dv">36</span>}</code>

当键是简单的字符串时,可以使用关键字参数来指定键值对:

<code class="sourceCode python"><span class="op">>>></span> <span class="bu">dict</span>(sape<span class="op">=</span><span class="dv">4139</span>, guido<span class="op">=</span><span class="dv">4127</span>, jack<span class="op">=</span><span class="dv">4098</span>)
{<span class="st">'sape'</span>: <span class="dv">4139</span>, <span class="st">'jack'</span>: <span class="dv">4098</span>, <span class="st">'guido'</span>: <span class="dv">4127</span>}</code>

5.6 Looping Techniques

遍历字典时,使用items()方法可以同时检索键及其对应的值。

<code class="sourceCode python"><span class="op">>>></span> knights <span class="op">=</span> {<span class="st">'gallahad'</span>: <span class="st">'the pure'</span>, <span class="st">'robin'</span>: <span class="st">'the brave'</span>}
<span class="op">>>></span> <span class="cf">for</span> k, v <span class="op">in</span> knights.items():
...     <span class="bu">print</span>(k, v)
...
gallahad the pure
robin the brave</code>

遍历序列时,使用enumerate()函数可以同时检索位置索引及其对应的值:

<code class="sourceCode python"><span class="op">>>></span> <span class="cf">for</span> i, v <span class="op">in</span> <span class="bu">enumerate</span>([<span class="st">'tic'</span>, <span class="st">'tac'</span>, <span class="st">'toe'</span>]):
...     <span class="bu">print</span>(i, v)
...
<span class="dv">0</span> tic
<span class="dv">1</span> tac
<span class="dv">2</span> toe</code>

同时遍历两个或者更多序列时,使用zip()函数可以将元素组成对:

<code class="sourceCode python"><span class="op">>>></span> questions <span class="op">=</span> [<span class="st">'name'</span>, <span class="st">'quest'</span>, <span class="st">'favorite color'</span>]
<span class="op">>>></span> answers <span class="op">=</span> [<span class="st">'lancelot'</span>, <span class="st">'the holy grail'</span>, <span class="st">'blue'</span>]
<span class="op">>>></span> <span class="cf">for</span> q, a <span class="op">in</span> <span class="bu">zip</span>(questions, answers):
...     <span class="bu">print</span>(<span class="st">'What is your </span><span class="sc">{0}</span><span class="st">?  It is </span><span class="sc">{1}</span><span class="st">.'</span>.<span class="bu">format</span>(q, a))
...
What <span class="op">is</span> your name?  It <span class="op">is</span> lancelot.
What <span class="op">is</span> your quest?  It <span class="op">is</span> the holy grail.
What <span class="op">is</span> your favorite color?  It <span class="op">is</span> blue.</code>

需要逆序遍历序列时,首先指定一个正向的序列,然后调用reversed()函数:

<code class="sourceCode python"><span class="op">>>></span> <span class="cf">for</span> i <span class="op">in</span> <span class="bu">reversed</span>(<span class="bu">range</span>(<span class="dv">1</span>, <span class="dv">10</span>, <span class="dv">2</span>)):
...     <span class="bu">print</span>(i)
...
<span class="dv">9</span>
<span class="dv">7</span>
<span class="dv">5</span>
<span class="dv">3</span>
<span class="dv">1</span></code>

需要以特定顺序遍历序列时,使用sorted()函数返回新的有序序列,原序列不会改动:

<code class="sourceCode python"><span class="op">>>></span> basket <span class="op">=</span> [<span class="st">'apple'</span>, <span class="st">'orange'</span>, <span class="st">'apple'</span>, <span class="st">'pear'</span>, <span class="st">'orange'</span>, <span class="st">'banana'</span>]
<span class="op">>>></span> <span class="cf">for</span> f <span class="op">in</span> <span class="bu">sorted</span>(<span class="bu">set</span>(basket)):
...     <span class="bu">print</span>(f)
...
apple
banana
orange
pear</code>

有时需要在遍历序列的同时修改序列,创建新的替代序列更加简单并且安全:

<code class="sourceCode python"><span class="op">>>></span> <span class="im">import</span> math
<span class="op">>>></span> raw_data <span class="op">=</span> [<span class="fl">56.2</span>, <span class="bu">float</span>(<span class="st">'NaN'</span>), <span class="fl">51.7</span>, <span class="fl">55.3</span>, <span class="fl">52.5</span>, <span class="bu">float</span>(<span class="st">'NaN'</span>), <span class="fl">47.8</span>]
<span class="op">>>></span> filtered_data <span class="op">=</span> []
<span class="op">>>></span> <span class="cf">for</span> value <span class="op">in</span> raw_data:
...     <span class="cf">if</span> <span class="op">not</span> math.isnan(value):
...         filtered_data.append(value)
...
<span class="op">>>></span> filtered_data
[<span class="fl">56.2</span>, <span class="fl">51.7</span>, <span class="fl">55.3</span>, <span class="fl">52.5</span>, <span class="fl">47.8</span>]</code>

5.7 More on Conditions

whileif语句中使用的条件可以包含任意操作符,不仅仅是比较运算符。

比较运算符innot in检查指定值在序列中是否存在(不存在)。操作符isis not比较两个对象是否真正相同(内存地址比较);这两个操作符只对像列表那样的可变对象重要。所有的比较运算符拥有相同的优先级,并且都低于数字运算符。

比较运算符可以链接起来。例如a ebee1f8a764ba39dad659ec343d8da37比较不同类型的对象是合法的。例如,混合数字类型之间的比较是根据其数字上的值,0等于0.0。否则,解释器会抛出TypeException异常,而不是随意提供结果

Footnotes

[1] 其他语言可能返回改变后的对象,从而允许方法链接,如:d->insert("a")>remove("b")->sort();
[2] 调用d.keys()返回一个dictionary view对象。从而支持如成员关系测试和迭代之类的操作,但是其内容并不是独立于原始字典的,只是一个视图

Das obige ist der detaillierte Inhalt von[译]Das Python-Tutorial#Datenstrukturen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn