Heim >Java >javaLernprogramm >Vier Möglichkeiten, die Werte zweier Variablen auszutauschen, ohne die dritte Variable zu verwenden

Vier Möglichkeiten, die Werte zweier Variablen auszutauschen, ohne die dritte Variable zu verwenden

巴扎黑
巴扎黑Original
2017-06-26 09:19:292146Durchsuche
通常我们的做法是(尤其是在学习阶段):定义一个新的变量,借助它完成交换。代码如下:
int a,b;
a=10; b=15;int t;
t=a; a=b; b=t;

这种算法易于理解,特别适合帮助初学者了解计算机程序的特点,是赋值语句的经典应用。在实际软件开发当中,此算法简单明了,不会产生歧义,便于程序员之间的交流,一般情况下碰到交换变量值的问题,都应采用此算法(以下称为标准算法)。


上面的算法最大的缺点就是需要借助一个临时变量。那么不借助临时变量可以实现交换吗?答案是肯定的!这里我们可以用三种算法来实现:1)算术运算;2)指针地址操作;3)位运算;4)栈实现。

1) 算术运算
int a,b;
a=10;b=12;
a=b-a; //a=2;b=12b=b-a; //a=2;b=10a=b+a; //a=10;b=10

它的原理是:把a、b看做数轴上的点,围绕两点间的距离来进行计算。

具体过程:第一句“a=b-a”求出ab两点的距离,并且将其保存在a中;第二句“b=b-a”求出a到原点的距离(b到原点的距离与ab两点距离之差),并且将其保存在b中;第三句“a=b+a”求出b到原点的距离(a到原点距离与ab两点距离之和),并且将其保存在a中。完成交换。
此算法与标准算法相比,多了三个计算的过程,但是没有借助临时变量。(以下称为算术算法)
缺点:是只能用于数字类型,字符串之类的就不可以了。a+b有可能溢出(超出int的范围),溢出是相对的, +了溢出了,-回来不就好了,所以溢出不溢出没关系,就是不安全。

2) 指针地址操作
因为对地址的操作实际上进行的是整数运算,比如:两个地址相减得到一个整数,表示两个变量在内存中的储存位置隔了多少个字节;地址和一个整数相加即“a+10”表示以a为基地址的在a后10个a类数据单元的地址。所以理论上可以通过和算术算法类似的运算来完成地址的交换,从而达到交换变量的目的。即:
int *a,*b; //假设*a=new int(10);*b=new int(20); //&a=0x00001000h,&b=0x00001200ha=(int*)(b-a); //&a=0x00000200h,&b=0x00001200hb=(int*)(b-a); //&a=0x00000200h,&b=0x00001000ha=(int*)(b+int(a)); //&a=0x00001200h,&b=0x00001000h

通过以上运算a、b的地址真的已经完成了交换,且a指向了原先b指向的值,b指向原先a指向的值了吗?上面的代码可以通过编译,但是执行结果却令人匪夷所思!原因何在?

首先必须了解,操作系统把内存分为几个区域:系统代码/数据区、应用程序代码/数据区、堆栈区、全局数据区等等。在编译源程序时,常量、全局变量等都放入全局数据区,局部变量、动态变量则放入堆栈区。这样当算法执行到“a=(int*)(b-a)”时,a的值并不是0x00000200h,而是要加上变量a所在内存区的基地址,实际的结果是:0x008f0200h,其中0x008f即为基地址,0200即为a在该内存区的位移。它是由编译器自动添加的。因此导致以后的地址计算均不正确,使得a,b指向所在区的其他内存单元。再次,地址运算不能出现负数,即当a的地址大于b的地址时,b-a<0,系统自动采用补码的形式表示负的位移,由此会产生错误,导致与前面同样的结果。
有办法解决吗?当然!以下是改进的算法:
if(a<b)
{
a=(int*)(b-a);
b=(int*)(b-(int(a)&0x0000ffff));
a=(int*)(b+(int(a)&0x0000ffff));
}else{
b=(int*)(a-b);
a=(int*)(a-(int(b)&0x0000ffff));
b=(int*)(a+(int(b)&0x0000ffff));
}

算法做的最大改进就是采用位运算中的与运算“int(a)&0x0000ffff”,因为地址中高16位为段地址,后16位为位移地址,将它和0x0000ffff进行与运算后,段地址被屏蔽,只保留位移地址。这样就原始算法吻合,从而得到正确的结果。

此算法同样没有使用第三变量就完成了值的交换,与算术算法比较它显得不好理解,但是它有它的优点即在交换很大的数据类型时,它的执行速度比算术算法快。因为它交换的时地址,而变量值在内存中是没有移动过的。(以下称为地址算法)

3) 位运算
int a=10,b=12; //a=1010^b=1100;a=a^b; //a=0110^b=1100;b=a^b; //a=0110^b=1010;a=a^b; //a=1100=12;b=1010;

此算法能够实现是由异或运算的特点决定的,通过异或运算能够使数据中的某些位翻转,其他位不变。这就意味着任意一个数与任意一个给定的值连续异或两次,值不变。

4)栈实现。不多解释了,栈和相关函数定义省去。
int exchange(int x,int y) 
{ 
     stack S; 
     push(S,x); 
     push(S,y); 
     x=pop(S); 
     y=pop(S); 
}

以上算法均实现了不借助其他变量来完成两个变量值的交换,相比较而言算术算法和位算法计算量相当,地址算法中计算较复杂,却可以很轻松的实现大类型(比如自定义的类或结构)的交换,而前两种只能进行整形数据的交换(理论上重载“^”运算符,也可以实现任意结构的交换)。

Die Einführung dieser drei Algorithmen soll nicht in die Praxis umgesetzt werden, sondern soll die Technologie diskutieren und den Charme des Programmierens demonstrieren. Daraus ist ersichtlich, dass kleine mathematische Fähigkeiten einen erheblichen Einfluss auf die Programmierung haben und bei richtiger Anwendung unerwartete magische Effekte haben. Aus Sicht der tatsächlichen Softwareentwicklung ist der Standardalgorithmus zweifellos der beste und kann jede Art von Austauschproblem lösen.

Das obige ist der detaillierte Inhalt vonVier Möglichkeiten, die Werte zweier Variablen auszutauschen, ohne die dritte Variable zu verwenden. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn