Heim >Java >javaLernprogramm >Detailliertes Tutorial zum Thread-Speichermodell in Java

Detailliertes Tutorial zum Thread-Speichermodell in Java

零下一度
零下一度Original
2017-05-25 16:14:541037Durchsuche


Java-Thread-Speichermodell

Alle Threads teilen sich den Hauptspeicher, jeder Thread hat seinen eigenen Arbeitsspeicher

refreshing local memory to/from main memory must comply to JMM rules

Gründe für die Thread-Sicherheit

Der Arbeitsspeicher des Threads ist eine abstrakte Beschreibung der Register und des Caches der CPU: In heutigen Computern werden beim Rechnen durch die CPU nicht immer Daten gelesen Aus dem Speicher lautet die Priorität der Datenlesereihenfolge: Register-Cache-Memory. Threads verbrauchen CPU. Während des Berechnungsprozesses werden einige Daten häufig in Registern und Caches gespeichert. Diese zwischengespeicherten Daten sollten zurückgeschrieben werden im Gedächtnis speichern, wenn es angebracht ist. Wenn mehrere Threads gleichzeitig bestimmte Speicherdaten lesen und schreiben, treten Probleme mit der Parallelität mehrerer Threads auf, die drei Merkmale betreffen: Atomizität, Ordnung und Sichtbarkeit. Plattformen, die Multithreading unterstützen, werden mit diesem Problem konfrontiert sein, und Sprachen, die Multithreading unterstützen und auf Multithread-Plattformen ausgeführt werden, sollten Lösungen für dieses Problem bieten.

JVM ist ein virtueller Computer, bei dem Java-Programme, die auf der Java-Virtual-Machine-Plattform ausgeführt werden, nicht direkt gesteuert werden können .Synchronisation, dann sollte Java Entwicklern eine Lösung auf Syntaxebene bieten, z. B. synchronisierte, flüchtige, Sperrmechanismen (z. B. synchronisierter Block, Bereitschaftswarteschlange, Blockierungswarteschlange). Diese Lösungen liegen nur auf grammatikalischer Ebene, aber wir müssen sie im Wesentlichen verstehen.

Jeder Thread hat seinen eigenen Ausführungsraum (d. h. Arbeitsspeicher). Wenn ein Thread beim Ausführen eine Variable verwendet, muss diese zuerst verwendet werden Kopieren Sie Ihren eigenen Arbeitsspeicher aus dem Hauptspeicher und führen Sie dann Operationen durch: Lesen, Ändern, Zuweisen von Werten usw., die alle im Arbeitsspeicher abgeschlossen sind. Nach Abschluss des Vorgangs werden die Variablen zurückgeschrieben der Hauptspeicher;

Jeder Thread erhält Daten aus dem Hauptspeicher, und die Daten zwischen Threads sind unsichtbar. Beispiel: Der ursprüngliche Wert der Hauptspeichervariablen A ist 1, Thread 1 entnimmt die Variable A aus dem Hauptspeicher , ändert den Wert von A auf 2 und in Thread 1. Wenn die Variable A nicht in den Hauptspeicher zurückgeschrieben wird, ist der von Thread 2 erhaltene Wert der Variablen A immer noch 1

Dies führt zum Konzept von „Sichtbarkeit“: Wenn eine gemeinsam genutzte Variable im Arbeitsspeicher mehrerer Threads vorhanden ist und ein Thread den Kopiewert der gemeinsam genutzten Variablen ändert, sollten andere Threads den geänderten Wert sehen können ein Multi-Thread-Sichtbarkeitsproblem.

Gewöhnliche Variablensituation: Beispielsweise ändert Thread A den Wert einer gewöhnlichen Variablen und schreibt ihn dann zurück in den Hauptspeicher, nachdem Thread A den Rückschreibvorgang abgeschlossen hat. Nur der Wert der neuen Variablen ist für Thread B sichtbar.

So stellen Sie die Thread-Sicherheit sicher

Das Schreiben von Thread-sicherem Code verwaltet im Wesentlichen den Status (Zustands-)Zugriff und normalerweise gemeinsamer, veränderlicher Zustand. Der Status hier sind die Variablen des -Objekts ( statische -Variablen und Instanzvariablen)

Die Prämisse der Thread-Sicherheit besteht darin, sicherzustellen, dass mehrere Threads auf die Variable zugreifen dass der Thread des Objekts Sicherheit die Verwendung von Synchronisierung erfordert, um den Zugriff auf seinen veränderlichen Zustand zu koordinieren; ein Versäumnis, dies zu tun, kann zu fehlerhaften Daten und anderen unvorhersehbaren Folgen führen. Immer wenn mehr als ein Thread auf eine bestimmte Statusvariable zugreift und einer der Threads in die Variable schreibt, muss die Synchronisierung verwendet werden, um den Zugriff der Threads auf die Variable zu koordinieren. Der primäre Synchronisationsmechanismus in Java ist das synchronisierte Schlüsselwort, das exklusive Sperren bereitstellt. Darüber hinaus umfasst der Begriff „Synchronisation“ auch die Verwendung von flüchtigen Variablen, expliziten Sperren und atomaren Variablen.

Wenn mehrere Threads ohne korrekte Synchronisierung auf dieselbe Variable zugreifen, ist Ihr Programm möglicherweise gefährdet. Es gibt drei Möglichkeiten, das Problem zu beheben:

l Variablen nicht über Threads hinweg teilen;

l Statusvariablen unveränderlich machen;

Volatile erfordert, dass jede Änderung einer Variablen durch das Programm in den Hauptspeicher zurückgeschrieben wird. Dies löst das Sichtbarkeitsproblem für andere Thread-Kursprogramme, kann jedoch keine Datenkonsistenz garantieren: Laut der Java-Spezifikations-, Zuweisungs- oder Rückgabewertoperationen für Basistypen sind atomare Operationen. Die grundlegenden Datentypen umfassen hier jedoch nicht Long und Double, da die von der JVM gesehene Basisspeichereinheit 32 Bit beträgt und sowohl Long als auch Double durch 64 Bit dargestellt werden. Daher kann es nicht in einem Taktzyklus abgeschlossen werden

Laienhaft ausgedrückt sind der Zustand eines Objekts seine Daten, die in Zustandsvariablen wie Instanzfeldern oder statischen Feldern gespeichert werden, wenn mehr als ein Thread darauf zugreift gegebene Zustandsvariablen. Und einer der Threads muss in die Variable schreiben.

Synchronisierungssperre: Jedes JAVA-Objekt verfügt zu jedem Zeitpunkt über eine Synchronisierungssperre , Höchstens ein Thread darf diese Sperre besitzen.

当一个线程试图访问带有synchronized(this)标记的代码块时,必须获得 this关键字引用的对象的锁,在以下的两种情况下,本线程有着不同的命运。

1、 假如这个锁已经被其它的线程占用,JVM就会把这个线程放到本对象的锁池中。本线程进入阻塞状态。锁池中可能有很多的线程,等到其他的线程释放了锁,JVM就会从锁池中随机取出一个线程,使这个线程拥有锁,并且转到就绪状态。

2、 假如这个锁没有被其他线程占用,本线程会获得这把锁,开始执行同步代码块。

(一般情况下在执行同步代码块时不会释放同步锁,但也有特殊情况会释放对象锁

如在执行同步代码块时,遇到异常而导致线程终止,锁会被释放;在执行代码块时,执行了锁所属对象的wait()方法,这个线程会释放对象锁,进入对象的等待池中)

Synchronized关键字保证了数据读写一致和可见性等问题,但是他是一种阻塞的线程控制方法,在关键字使用期间,所有其他线程不能使用此变量,这就引出了一种叫做非阻塞同步的控制线程安全的需求;

ThreadLocal 解析

顾名思义它是local variable(线程局部变量)。它的功用非常简单,就是为每一个使用该变量的线程都提供一个变量值的副本,是每一个线程都可以独立地改变自己的副本,而不会和其它线程的副本冲突。从线程的角度看,就好像每一个线程都完全拥有该变量。

每个线程都保持对其线程局部变量副本的隐式引用,只要线程是活动的并且 ThreadLocal 实例是可访问的;在线程消失之后,其线程局部实例的所有副本都会被垃圾回收(除非存在对这些副本的其他引用)。

Object wait()和notify()方法解析

Object的wait()和notify()、notifyAll()方法,使用一个对象作为锁,然后调用wait()就会挂起当前线程,同时释放对象锁;

notify()使用要首先获取对象锁,然后才能唤醒被挂起的线程(因为等待对象锁而挂起的)

notifyAll():唤醒在此对象监视器上等待的所有线程。

wait()在其他线程调用此对象的 notify() 方法或 notifyAll() 方法前,导致当前线程等待。

抛出:  IllegalMonitorStateException  - 如果当前线程不是此对象监视器的所有者

package com.taobao.concurrency;
public class WaitTest {
    public static String a = "";// 作为监视器对象

    public static void main(String[] args) throws InterruptedException {
        WaitTest wa = new WaitTest();
        TestTask task = wa.new TestTask();
        Thread t = new Thread(task);
        t.start();
        Thread.sleep(12000);
        for (int i = 5; i > 0; i--) {
            System.out.println("快唤醒挂起的线程************");
            Thread.sleep(1000);
        }
        System.out.println("收到,马上!唤醒挂起的线程************");
        synchronized (a) {
            a.notifyAll();
        }
    }

    class TestTask implements Runnable {

        @Override
        public void run() {
            synchronized (a) {
                try {
                    for (int i = 10; i > 0; i--) {
                        Thread.sleep(1000);
                        System.out.println("我在运行 ***************");
                    }
                    a.wait();
                    for (int i = 10; i > 0; i--) {
                        System.out.println("谢谢唤醒**********又开始运行了*******");
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
}

用wait notify 解决生产者消费者问题代码:

package com.taobao.concurrency;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
class Meal {
    private final int orderNum;

    public Meal(int orderNum) {
        this.orderNum = orderNum;
    }

    public String toString() {
        return "Meal " + orderNum;
    }
}

class WaitPerson implements Runnable {
    private Restaurant restaurant;

    public WaitPerson(Restaurant r) {
        this.restaurant = r;
    }

    @Override
    public void run() {
        try {
            while (!Thread.interrupted()) {
                synchronized (this) {
                    while (restaurant.meal == null)
                        wait();// ..for the chef to produce a meal
                }
                System.out.println("WaitPerson got" + restaurant.meal);
                synchronized (restaurant.chef) {
                    restaurant.meal = null;
                    restaurant.chef.notifyAll();// ready for another
                }
            }
            TimeUnit.MICROSECONDS.sleep(100);
        } catch (InterruptedException e) {
            System.out.println("WaitPerson interrupted");
        }
    }
}

class Chef implements Runnable {
    private Restaurant restaurant;
    private int count = 0;

    public Chef(Restaurant r) {
        this.restaurant = r;
    }

    @Override
    public void run() {
        try {
            while (!Thread.interrupted()) {
                synchronized (this) {
                    while (restaurant.meal != null)
                        wait();// ...for the meal to be taken
                }
                if (++count == 10) {
                    System.out.println("Out of food,closing");
                    restaurant.exec.shutdownNow();
                }
                System.out.println("Order up!");
                synchronized (restaurant.waitPerson) {
                    restaurant.meal = new Meal(count);
                    restaurant.waitPerson.notifyAll();
                }

            }
        } catch (InterruptedException e) {
        }
    }
}

public class Restaurant {
    Meal meal;
    ExecutorService exec = Executors.newCachedThreadPool();
    WaitPerson waitPerson = new WaitPerson(this);
    Chef chef = new Chef(this);

    public Restaurant() {
        exec.execute(chef);
        exec.execute(waitPerson);
    }
    public static void main(String[] args) {
        new Restaurant();
    }

}

用ArrayBlockingQueue解决生产者消费者问题 ;默认使用的是非公平锁

take():取走BlockingQueue里排在首位的对象,若BlockingQueue为空,阻断进入等待状态直到Blocking有新的对象被加入为止,若请求不到此线程被加入阻塞队列;

如果使用公平锁,当有内容可以消费时,会从队首取出消费者线程进行消费(即等待时间最长的线程)

add(anObject):把anObject加到BlockingQueue里,即如果BlockingQueue可以容纳,则返回true,否则招聘异常

package com.taobao.concurrency;

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;

public class TestBlockingQueues {

    public static void main(String[] args) {
        BlockingQueue<String> queue = new ArrayBlockingQueue<String>(20);
        Thread pro = new Thread(new Producer(queue), "生产者");
        pro.start();
        for (int i = 0; i < 10; i++) {
            Thread t = new Thread(new Concumer(queue), "消费者 " + i);
            t.start();
        }

    }

}

class Producer implements Runnable {
    BlockingQueue<String> queue;

    public Producer(BlockingQueue<String> queue) {
        this.queue = queue;
    }

    @Override
    public void run() {

        int i = 0;
        while (true) {
            try {
                System.out.println("生产者生产食物, 食物编号为:" + i);
                queue.put(" 食物 " + i++);
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                System.out.println("生产者被中断");
            }
        }
    }
}

class Concumer implements Runnable {
    BlockingQueue<String> queue;

    public Concumer(BlockingQueue<String> queue) {
        this.queue = queue;
    }

    @Override
    public void run() {
        while (true) {
            try {
                System.out.println(Thread.currentThread().getName() + "消费:"
                        + queue.take());
            } catch (InterruptedException e) {
                System.out.println("消费者被中断");
            }
        }
    }
}


执行结果:
消费者 0 请求消费
消费者 2 请求消费
消费者 4 请求消费
消费者 6 请求消费
消费者 8 请求消费
消费者 5 请求消费
生产者生产食物, 食物编号为:0
消费者 0消费: 食物 0
消费者 1 请求消费
消费者 3 请求消费
消费者 7 请求消费
消费者 9 请求消费
消费者 0 请求消费
生产者生产食物, 食物编号为:1
消费者 2消费: 食物 1
消费者 2 请求消费
生产者生产食物, 食物编号为:2
消费者 4消费: 食物 2
消费者 4 请求消费
生产者生产食物, 食物编号为:3
消费者 6消费: 食物 3
消费者 6 请求消费
生产者生产食物, 食物编号为:4
消费者 8消费: 食物 4
消费者 8 请求消费
生产者生产食物, 食物编号为:5
消费者 5消费: 食物 5
消费者 5 请求消费
生产者生产食物, 食物编号为:6
消费者 1消费: 食物 6
消费者 1 请求消费
生产者生产食物, 食物编号为:7
消费者 3消费: 食物 7
消费者 3 请求消费
生产者生产食物, 食物编号为:8
消费者 7消费: 食物 8
消费者 7 请求消费
生产者生产食物, 食物编号为:9
消费者 9消费: 食物 9
消费者 9 请求消费

多个生产者,多个消费者

package com.taobao.concurrency;

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;

public class TestBlockingQueues {

    public static void main(String[] args) {
        BlockingQueue<String> queue = new ArrayBlockingQueue<String>(20);
        for (int i = 0; i < 10; i++) {
            Thread pro = new Thread(new Producer(queue), "生产者" + i);
            pro.start();
        }
        for (int i = 0; i < 10; i++) {
            Thread t = new Thread(new Concumer(queue), "消费者 " + i);
            t.start();
        }

    }

}

class Producer implements Runnable {
    BlockingQueue<String> queue;

    public Producer(BlockingQueue<String> queue) {
        this.queue = queue;
    }

    @Override
    public void run() {

        int i = 0;
        while (true) {
            try {
               
                    System.out.println(Thread.currentThread().getName()
                            + "生产食物, 食物编号为:" + Thread.currentThread().getName()
                            + i);
                    queue.put(" 食物 " + Thread.currentThread().getName() + i++);
                    Thread.sleep(10000);
               
            } catch (InterruptedException e) {
                System.out.println("生产者被中断");
            }
        }
    }
}

class Concumer implements Runnable {
    BlockingQueue<String> queue;

    public Concumer(BlockingQueue<String> queue) {
        this.queue = queue;
    }

    @Override
    public void run() {
        while (true) {
            System.out.println(Thread.currentThread().getName() + " 请求消费");
            try {
                System.out.println(Thread.currentThread().getName() + "消费:"
                        + queue.take());
                Thread.sleep(100);
            } catch (InterruptedException e) {
                System.out.println("消费者被中断");
            }
        }
    }
}

生产者0生产食物, 食物编号为:生产者00
生产者2生产食物, 食物编号为:生产者20
生产者1生产食物, 食物编号为:生产者10
生产者3生产食物, 食物编号为:生产者30
生产者4生产食物, 食物编号为:生产者40
生产者6生产食物, 食物编号为:生产者60
生产者8生产食物, 食物编号为:生产者80
生产者5生产食物, 食物编号为:生产者50
生产者7生产食物, 食物编号为:生产者70
生产者9生产食物, 食物编号为:生产者90
消费者 0 请求消费
消费者 0消费: 食物 生产者00
消费者 2 请求消费
消费者 2消费: 食物 生产者20
消费者 1 请求消费
消费者 1消费: 食物 生产者10
消费者 4 请求消费
消费者 4消费: 食物 生产者30
消费者 3 请求消费
消费者 6 请求消费
消费者 6消费: 食物 生产者40
消费者 3消费: 食物 生产者60
消费者 8 请求消费
消费者 8消费: 食物 生产者80
消费者 5 请求消费
消费者 5消费: 食物 生产者50
消费者 7 请求消费
消费者 7消费: 食物 生产者70
消费者 9 请求消费
消费者 9消费: 食物 生产者90
消费者 0 请求消费
消费者 1 请求消费
消费者 2 请求消费
消费者 4 请求消费
消费者 3 请求消费
消费者 5 请求消费
消费者 7 请求消费
消费者 9 请求消费
消费者 6 请求消费
消费者 8 请求消费
生产者0生产食物, 食物编号为:生产者01
消费者 0消费: 食物 生产者01
生产者2生产食物, 食物编号为:生产者21
生产者4生产食物, 食物编号为:生产者41
消费者 1消费: 食物 生产者21
生产者1生产食物, 食物编号为:生产者11
消费者 2消费: 食物 生产者41
消费者 4消费: 食物 生产者11
生产者3生产食物, 食物编号为:生产者31

条件队列解释:

Condition queuesare like the "toast is ready" bell on your toaster. If you are 
list
ening for it, you are notified promptly when your toast is ready and can drop what you are doing (or not, maybe you want to finish the newspaper first) and get your toast. If you are not listening for it (perhaps you went outside to get the newspaper), you could miss the notification, but on return to the kitchen you can observe the state of the toaster and either retrieve the toast if it is finished or start listening for the bell again if it is not.

基于条件的:多线程情况下,某个条件在某个时刻为假,不代表一直为假,可能到某个时刻就好了!

Lock 使用的默认 为非公平锁;condition对象继承了与之相关的锁的共平性特性,如果是公平的锁,线程会依照FIFO的顺序从Condition.wait中被释放;ArrayBlockingQueue中有一个比较不好的地方,生产者每次生产完之后,都要通知消费者,至于有没有性能损失TODO

【相关推荐】

1. 详解java 中valueOf方法实例

2. JMM java内存模型图文详解

3.详细介绍Java内存区域与内存溢出异常

4. JavaScript中的object转换函数toString()与valueOf()介绍_javascript技巧

Das obige ist der detaillierte Inhalt vonDetailliertes Tutorial zum Thread-Speichermodell in Java. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn