Heim > Artikel > Backend-Entwicklung > Python-Methode zur Vervollständigung der logistischen Regression
Dieser Artikel stellt hauptsächlich Beispiele für die Implementierung der logistischen Regression in Python vor. Es wird zusammengestellt und mit allen geteilt, die es brauchen zusammen schauen.
Das in diesem Artikel implementierte Prinzip ist sehr einfach und die Optimierungsmethode ist der Gradientenabstieg. Testergebnisse gibt es später.
Werfen wir zunächst einen Blick auf den implementierten Beispielcode:
# coding=utf-8 from math import exp import matplotlib.pyplot as plt import numpy as np from sklearn.datasets.samples_generator import make_blobs def sigmoid(num): ''' :param num: 待计算的x :return: sigmoid之后的数值 ''' if type(num) == int or type(num) == float: return 1.0 / (1 + exp(-1 * num)) else: raise ValueError, 'only int or float data can compute sigmoid' class logistic(): def init(self, x, y): if type(x) == type(y) == list: self.x = np.array(x) self.y = np.array(y) elif type(x) == type(y) == np.ndarray: self.x = x self.y = y else: raise ValueError, 'input data error' def sigmoid(self, x): ''' :param x: 输入向量 :return: 对输入向量整体进行simgoid计算后的向量结果 ''' s = np.frompyfunc(lambda x: sigmoid(x), 1, 1) return s(x) def train_with_punish(self, alpha, errors, punish=0.0001): ''' :param alpha: alpha为学习速率 :param errors: 误差小于多少时停止迭代的阈值 :param punish: 惩罚系数 :param times: 最大迭代次数 :return: ''' self.punish = punish dimension = self.x.shape[1] self.theta = np.random.random(dimension) compute_error = 100000000 times = 0 while compute_error > errors: res = np.dot(self.x, self.theta) delta = self.sigmoid(res) - self.y self.theta = self.theta - alpha * np.dot(self.x.T, delta) - punish * self.theta # 带惩罚的梯度下降方法 compute_error = np.sum(delta) times += 1 def predict(self, x): ''' :param x: 给入新的未标注的向量 :return: 按照计算出的参数返回判定的类别 ''' x = np.array(x) if self.sigmoid(np.dot(x, self.theta)) > 0.5: return 1 else: return 0 def test1(): ''' 用来进行测试和画图,展现效果 :return: ''' x, y = make_blobs(n_samples=200, centers=2, n_features=2, random_state=0, center_box=(10, 20)) x1 = [] y1 = [] x2 = [] y2 = [] for i in range(len(y)): if y[i] == 0: x1.append(x[i][0]) y1.append(x[i][1]) elif y[i] == 1: x2.append(x[i][0]) y2.append(x[i][1]) # 以上均为处理数据,生成出两类数据 p = logistic(x, y) p.train_with_punish(alpha=0.00001, errors=0.005, punish=0.01) # 步长是0.00001,最大允许误差是0.005,惩罚系数是0.01 x_test = np.arange(10, 20, 0.01) y_test = (-1 * p.theta[0] / p.theta[1]) * x_test plt.plot(x_test, y_test, c='g', label='logistic_line') plt.scatter(x1, y1, c='r', label='positive') plt.scatter(x2, y2, c='b', label='negative') plt.legend(loc=2) plt.title('punish value = ' + p.punish.str()) plt.show() if name == 'main': test1()
Das laufende Ergebnis ist wie gezeigt unten
Zusammenfassung
[Verwandte Empfehlungen]
1. Python kostenloses Video-Tutorial
2. Python-Grundlagen-Einführungs-Tutorial
3. Python-objektorientiertes Video-Tutorial
Das obige ist der detaillierte Inhalt vonPython-Methode zur Vervollständigung der logistischen Regression. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!