


python脚本
log_format main ‘$remote_addr – $remote_user [$time_iso8601] “$request” ‘
‘$status $body_bytes_sent “$http_referer” ‘
‘”$http_user_agent” “$http_x_forwarded_for” ‘
‘ “$upstream_addr” “$upstream_status” “$request_time"`;
cat website.access.log| awk ‘{print $(NF)}’ | awk -F “\”” ‘{print $2′}>a.txt
paste -d ” ” website.access.log a.txt > b.txt
cat b.txt |awk ‘($NF>1){print $6$7 ” ” $NF}’>c.txt
linux下使用awk,wc,sort,uniq,grep对nginx日志进行分析和统计
b). 字段含义(如下说明)
column1:ip_address
column2:log_time
column3:request
column4:status_code
column5:send_bytes
column6:referer
需求一:统计总记录数,总成功数,各种失败数:404,403,500
cat data.log|awk -F '\t' '{if($4 > 0) print $4}'|wc -l|
awk '{print "Total Items:"$1}'
2. 提取成功、各种失败总数
cat data.log|awk -F '\t' '{if($4>0 && $4==200) print $4}'|wc -l
需求二:各种错误中,哪类URL出现的次数最多,要求剔除重复项,并倒叙给出结果
cat data.log|awk -F '\t' '{if($4>0 && $4==500) print $3}'|awk '{print $2}'|sort|uniq -c|sort -k1 nr
需求三:要统计URL中文件名出现的次数,结果中要包含Code 和 Referer。但是 URL和 Referer中都包含 / 字符,对于过滤有干扰,尝试去解决。
cat data.log|awk '{print $5,$7,$9}'|grep 200|
sed 's#.*/\(.*\)#\1#'|sort -k1|uniq -c
wc -l access.log |awk '{print $1}' 总请求数
awk '{print $1}' access.log|sort |uniq |wc -l 独立IP数
awk -F'[ []' '{print $5}' access.log|sort|uniq -c|sort -rn|head -5 每秒客户端请求数 TOP5
awk '{print $1}' access.log|sort |uniq -c | sort -rn |head -5 访问最频繁IP Top5
awk '{print $7}' access.log|sort |uniq -c | sort -rn |head -5 访问最频繁的URL TOP5
awk '{if ($12 > 10){print $7}}' access.log|sort|uniq -c|sort -rn |head -5
响应大于10秒的URL TOP5
awk '{if ($13 != 200){print $13}}' access.log|sort|uniq -c|sort -rn|head -5
分析请求数大于50000的源IP的行为
awk '{print $1}' access.log|sort |uniq -c |sort -rn|awk '{if ($1 > 50000){print $2}}' > tmp.txt
for i in $(cat tmp.txt)
do
echo $i >> analysis.txt
echo "访问行为统计" >> analysis.txt
grep $i access.log|awk '{print $6}' |sort |uniq -c | sort -rn |head -5 >> analysis.txt
echo "访问接口统计" >> analysis.txt
grep $i access.log|awk '{print $7}' |sort |uniq -c | sort -rn |head -5 >> analysis.txt
echo -e "\n" >> /root/analysis/$Ydate.txt
done
如果源IP来自代理服务器,应将第一条命令过滤地址改为$http_x_forwarded_for地址
awk '{print $NF}' access.log|sort |uniq -c |sort -rn|awk '{if ($1 > 50000){print $2}}' > tmp.txt
5.性能指标
并发连接数
客户端向服务器发起请求,并建立了TCP连接。每秒钟服务器链接的总TCP数量,就是并发连接数
PV(page view) UV(unique visitor) 独立IP
6.故障
1.Nginx Connection 不夠用 的參數調整
2.nginx+php-fpm出现502
3.线上nginx的一次“no live upstreams while connecting to upstream ”分析
4.nginx proxy_pass末端神奇的斜线
5.nginx+tomcat使用apache的FtpClient上传图片时由于多线程问题导致的文件大小为0的问题
案例一 ip - - [23/Mar/2017:00:17:49 +0800] "GET / HTTP/1.1" 302 0 "-" "PycURL/7.19.7" log_format access '$HTTP_X_REAL_IP - $remote_user [$time_local] "$request"' '$status $body_bytes_sent "$http_referer" ' '"$http_user_agent" $HTTP_X_Forwarded_For'; 192.168.21.1 - - [27/Jan/2014:11:28:53 +0800] "GET /2.php HTTP/1.1" 200 133 "-" "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/33.0.1707.0 Safari/537.36" "-"192.168.21.128 200 127.0.0.1:9000 0.119 0.119 #log_format main '$remote_addr - $remote_user [$time_local] "$request" ' # '$status $body_bytes_sent "$http_referer" ' # '"$http_user_agent" "$http_x_forwarded_for"'; $http_host:用户在浏览器中输入的URL(IP或着域名)地址 192.168.21.128 $upstream_status: upstream状态 200 $upstream_addr: 后端upstream地址及端口 127.0.0.1:9000 $request_time: 页面访问总时间 0.119 $upstream_response_time:页面访问中upstream响应时间 0.119 $10 $body_bytes_sent $1 $remote_addr $7 $request $11 $http_referer $9 $status $6 http_user_agent 1、总访问量 2、总带宽 3、独立访客量 4、访问IP统计 5、访问url统计 6、来源统计 7、404统计 8、搜索引擎访问统计(谷歌,百度) 9、搜索引擎来源统计(谷歌,百度) #!/bin/bash log_path=/home/www.centos.bz/log/access.log.1 domain="centos.bz" email="log@centos.bz" maketime=`date +%Y-%m-%d" "%H":"%M` logdate=`date -d "yesterday" +%Y-%m-%d` total_visit=`wc -l ${log_path} | awk '{print $1}'` total_bandwidth=`awk -v total=0 '{total+=$10}END{print total/1024/1024}' ${log_path}` total_unique=`awk '{ip[$1]++}END{print asort(ip)}' ${log_path}` ip_pv=`awk '{ip[$1]++}END{for (k in ip){print ip[k],k}}' ${log_path} | sort -rn | head -20` url_num=`awk '{url[$7]++}END{for (k in url){print url[k],k}}' ${log_path} | sort -rn | head -20` referer=`awk -v domain=$domain '$11 !~ /http:\/\/[^/]*'"$domain"'/{url[$11]++}END{for (k in url){print url[k],k}}' ${log_path} | sort -rn | head -20` notfound=`awk '$9 == 404 {url[$7]++}END{for (k in url){print url[k],k}}' ${log_path} | sort -rn | head -20` spider=`awk -F'"' '$6 ~ /Baiduspider/ {spider["baiduspider"]++} $6 ~ /Googlebot/ {spider["googlebot"]++}END{for (k in spider){print k,spider[k]}}' ${log_path}` search=`awk -F'"' '$4 ~ /http:\/\/www\.baidu\.com/ {search["baidu_search"]++} $4 ~ /http:\/\/www\.google\.com/ {search["google_search"]++}END{for (k in search){print k,search[k]}}' ${log_path}` #echo -e "概况\n报告生成时间:${maketime}\n总访问量:${total_visit}\n总带宽:${total_bandwidth}M\n独 立访客:${total_unique}\n\n访问IP统计\n${ip_pv}\n\n访问url统计\n${url_num}\n\n来源页面统计 \n${referer}\n\n404统计\n${notfound}\n\n蜘蛛统计\n${spider}\n\n搜索引擎来源统计 \n${search}" | mail -s "$domain $logdate log statistics" ${email}
案例二 # tar zxvf pymongo-1.11.tar.gz # cd pymongo-1.11 # python setup.py install python连接mongodb样例 $ cat conn_mongodb.py #!/usr/bin/python import pymongo import random conn = pymongo.Connection("127.0.0.1",27017) db = conn.tage #连接库 db.authenticate("tage","123") #用户认证 db.user.drop() #删除集合user db.user.save({'id':1,'name':'kaka','sex':'male'}) #插入一个数据 for id in range(2,10): name = random.choice(['steve','koby','owen','tody','rony']) sex = random.choice(['male','female']) db.user.insert({'id':id,'name':name,'sex':sex}) #通过循环插入一组数据 content = db.user.find() #打印所有数据 for i in content: print i 编写python脚本 #encoding=utf8 import re zuidaima_nginx_log_path="/usr/local/nginx/logs/www.zuidaima.com.access.log" pattern = re.compile(r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}') def stat_ip_views(log_path): ret={} f = open(log_path, "r") for line in f: match = pattern.match(line) if match: ip=match.group(0) if ip in ret: views=ret[ip] else: views=0 views=views+1 ret[ip]=views return ret def run(): ip_views=stat_ip_views(zuidaima_nginx_log_path) max_ip_view={} for ip in ip_views: views=ip_views[ip] if len(max_ip_view)==0: max_ip_view[ip]=views else: _ip=max_ip_view.keys()[0] _views=max_ip_view[_ip] if views>_views: max_ip_view[ip]=views max_ip_view.pop(_ip) print "ip:", ip, ",views:", views #总共有多少ip print "total:", len(ip_views) #最大访问的ip print "max_ip_view:", max_ip_view run()
Das obige ist der detaillierte Inhalt vonZwei Methoden zur Analyse des Nginx-Dienstprotokolls (Shell+Python). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Zu den realen Anwendungen von Python gehören Datenanalysen, Webentwicklung, künstliche Intelligenz und Automatisierung. 1) In der Datenanalyse verwendet Python Pandas und Matplotlib, um Daten zu verarbeiten und zu visualisieren. 2) In der Webentwicklung vereinfachen Django und Flask Frameworks die Erstellung von Webanwendungen. 3) Auf dem Gebiet der künstlichen Intelligenz werden Tensorflow und Pytorch verwendet, um Modelle zu bauen und zu trainieren. 4) In Bezug auf die Automatisierung können Python -Skripte für Aufgaben wie das Kopieren von Dateien verwendet werden.

Python wird häufig in den Bereichen Data Science, Web Development und Automation Scripting verwendet. 1) In der Datenwissenschaft vereinfacht Python die Datenverarbeitung und -analyse durch Bibliotheken wie Numpy und Pandas. 2) In der Webentwicklung ermöglichen die Django- und Flask -Frameworks Entwicklern, Anwendungen schnell zu erstellen. 3) In automatisierten Skripten machen Pythons Einfachheit und Standardbibliothek es ideal.

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor