Heim >Backend-Entwicklung >Python-Tutorial >Vertiefendes Verständnis der Verwendung von RabbitMQ in Python
Vorwort: Dieses Mal habe ich einen Artikel über RabbitMQ zusammengestellt und geschrieben. Ich habe das Gefühl, dass RabbitMQ viel schwieriger ist. In diesem Blog werden einige englische Erklärungen eingefügt, die jedoch nicht schwer zu verstehen sind. Informationen zum Herunterladen und Installation von RabbitMQ finden Sie unter Redis&RabbitMQ-Installation.
rabbitMQ ist eine Nachrichten-Warteschlange; denken Sie darüber nach, was wir zuvor über die Warteschlange gelernt haben: Thread-Warteschlange (Thread-Warteschlange, Dateninteraktion zwischen mehreren Threads), Prozesswarteschlange (Der übergeordnete Prozess interagiert mit untergeordneten Prozessen oder mehrere untergeordnete Prozesse, die zum selben übergeordneten Prozess gehören, interagieren.) Wenn zwei unabhängige Programme nicht über die Warteschlange interagieren können, benötigen wir einen Zwischenagenten. Das heißt, RabbitMQ.
von Wie aus der obigen Abbildung ersichtlich ist, werden die Daten zuerst gesendet an den Exchange Exchanger, und dann wird der Austausch an die entsprechende Warteschlange gesendet. Das pika-Modul ist Pythons APISchnittstelle für RabbitMQ. Auf der Empfangsseite gibt es eine Rückruffunktion , die aufgerufen wird, sobald die Daten empfangen werden. Nachdem eine Nachricht von einem Verbraucher empfangen wurde, wird die Nachricht aus der Warteschlange gelöscht. OK, nachdem wir das obige Wissen verstanden haben, werfen wir zunächst einen Blick auf eine einfache Kommunikation mit der RabbitMQ-Warteschlange.
sEndeEnde:
import pika #连上rabbitMQ connection=pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel=connection.channel() #生成管道,在管道里跑不同的队列 #声明queue channel.queue_declare(queue='hello1') #n RabbitMQ a message can never be sent directly to the queue,it always needs to go through an exchange. #向队列里发数据 channel.basic_publish(exchange='', #先把数据发给exchange交换器,exchage再发给相应队列 routing_key='hello1', #向"hello'队列发数据 body='HelloWorld!!') #发的消息 print("[x]Sent'HelloWorld!'") connection.close()Empfangsende:
import pika connection=pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel=connection.channel() # You may ask why we declare the queue again ‒ we have already declared it in our previous code. # We could avoid that if we were sure that the queue already exists. For example if send.py program # was run before. But we're not yet sure which program to run first. In such cases it's a good # practice to repeat declaring the queue in both programs. channel.queue_declare(queue='hello1')#声明队列,保证程序不出错 def callback(ch,method,properties,body): print("-->ch",ch) print("-->method",method) print("-->properties",properties) print("[x] Received %r" % body) #一条消息被一个消费者接收后,该消息就从队列删除 channel.basic_consume(callback, #回调函数,一接收到消息就调用回调函数 queue='hello1', no_ack=False) #消费完毕后向服务端发送一个确认,默认为False print('[*] Waiting for messages.To exit press CTRL+C') channel.start_consuming()
Laufergebnisse: (Der obige Code entspricht der Anmerkung , die ich geschrieben habe und die meiner Meinung nach verständlich ist~)
rabbitMQ_1_send.py [x] Sent 'Hello World!' rabbitMQ_2_receive.py [*] Waiting for messages. To exit press CTRL+C -->ch <pika.adapters.blocking_connection.BlockingChannel object at 0x000000000250AEB8> -->method <Basic.Deliver(['consumer_tag=ctag1.f9533f4c8c59473c8096817670ad69d6', 'delivery_tag=1', 'exchange=', 'redelivered=False', 'routing_key=hello1'])> -->properties <BasicProperties> [x] Received b'Hello World!!'
Nach eingehender Prüfung haben wir folgende zwei Erkenntnisse:
Führen Sie zuerst RabbitMQ_1_send.py aus, um Daten zu senden, aber RabbitMQ_2_receive.py wird nicht ausgeführt. Es wurde festgestellt, dass bei laufendem Empfang weiterhin Daten empfangen werden können.
Führen Sie mehrere (z. B. 3) Clients aus, um Daten zu empfangen, und führen Sie dann den Sender Client 1 aus, der die Daten empfängt, und führt dann den Sender Client 2 aus empfängt die Daten, führt dann den Absender aus und Client 3 empfängt die Daten.
Lastausgleich ähnelt.
Wenn Sie sich das obige Beispiel ansehen, finden Sie einen Code no_ack=False ( Senden Sie eine Bestätigung an den Server, nachdem der Verbrauch abgeschlossen ist. Der Standardwert ist Falsch)Mit meinem Englischniveau 4 möchte ich schreiben, nachdem ich die folgende Erklärung gelesen habe ack Sehr großartig!! Also teile ich es:
Das Erledigen einer Aufgabe kann ein paar Sekunden dauern. Sie fragen sich vielleicht, was passiert, wenn einer der Verbraucher einen Longstart durchführt Aufgabe und stirbt, wenn sie nur teilweise erledigt ist. Mit unserem aktuellen Code wird die Nachricht sofort aus dem Speicher entfernt, wenn Sie einen Mitarbeiter töten Wir verlieren auch alle Nachrichten, die an diesen bestimmten Mitarbeiter gesendet, aber noch nicht bearbeitet wurden.Aber das wollen wir nicht Aufgaben verlieren. Wenn ein Mitarbeiter stirbt, möchten wir, dass die Aufgabe an einen anderen Mitarbeiter weitergeleitet wird verloren, unterstützt RabbitMQ Nachrichtenbestätigungen vom Verbraucher, um RabbitMQ mitzuteilen, dass eine bestimmte Nachricht empfangen und verarbeitet wurde und dass RabbitMQ sie
löschenkann.
Wenn ein Verbraucher stirbt (sein Kanal ist geschlossen, die Verbindung wird geschlossen oder die TCP-Verbindung geht verloren), ohne eine Bestätigung zu senden, erkennt RabbitMQ, dass eine Nachricht nicht vollständig verarbeitet wurde und stellt sie erneut in die Warteschlange. Wenn gleichzeitig andere Verbraucher zur gleichen Zeit online sind, wird es schnell an einen anderen Verbraucher weitergeleitet. Auf diese Weise können Sie sicher sein, dass keine Nachricht verloren geht, selbst wenn die Arbeiter gelegentlich ausfallen.
Es gibt keine Nachrichten-Timeouts; RabbitMQ übermittelt die Nachricht erneut, wenn der Verbraucher stirbt. Es ist in Ordnung, auch wenn die Verarbeitung einer Nachricht sehr, sehr lange dauert.
Nachrichtenbestätigungen sind standardmäßig aktiviert. In vorherigen Beispielen haben wir sie explizit über das Flag „no_ack=True“ deaktiviert. Es ist an der Zeit, diese Markierung zu entfernen und eine ordnungsgemäße Bestätigung des Arbeiters zu senden, sobald wir mit einer Aufgabe fertig sind.
Mit diesem Code können wir sicher sein, dass dies auch dann der Fall ist, wenn Sie einen Arbeiter töten Wenn Sie STRG+C während eine Nachricht verarbeiten, geht nichts verloren. Kurz nach dem Tod des Mitarbeiters werden alle unbestätigten Nachrichten erneut zugestellt任务A,消费者接收任务A并处理,处理完后生产者将消息队列中的任务A删除.现在我们遇到了一个问题:如果消费者接收任务A,但在处理的过程中突然宕机了.而此时生产者将消息相当于丢失了任务/消息。为解决这个问题,应使消费者接收任务并成功处理完后发送一个ack到生产者!生产者收到ack后就明白任务A已被成功处理,就需要把任务A发送给下一个消费者, 直到任务A被成功处理。
三、消息持久化
但是,生产者生产数据,然后重启rabbitMQ,消费者是无法接收数据
。eg:消息在传输过程中rabbitMQ服务器宕机了,会发现之前的消息队列就不存在了,这时我们就要用到消息持久化,消息持久化会让队列不随着服务器宕机而消失
,会永久的保存下去.下面看下关于消息持久化的英文讲解:Wir haben gelernt, wie wir das sicherstellen können Selbst wenn der Verbraucher stirbt, geht die Aufgabe nicht verloren (standardmäßig verwenden Sie no_ack=True, wenn Sie sie deaktivieren möchten). Aber unsere Aufgaben gehen trotzdem verloren, wenn der RabbitMQ-Server nicht mehr funktioniert.
Wenn RabbitMQ beendet wird oder abstürzt, vergisst es die Warteschlangen und Nachrichten, es sei denn, Sie sagen es es nicht. Zwei Dinge sind erforderlich
um sicherzustellen, dass Nachrichten nicht verloren gehen: Wir müssen sowohl die Warteschlange als auch die Nachrichten als dauerhaft markieren.1 channel.queue_declare(queue='hello', sustainable=True)
Obwohl dieser Befehl an sich korrekt ist, funktioniert er in unserem Setupnicht. Das liegt daran, dass wir bereits eine Warteschlange namens „Hallo“ definiert haben, die nicht dauerhaft ist. RabbitMQ erlaubt Ihnen nicht, eine vorhandene Warteschlange mit anderen Parametern neu zu definieren und
gibteinen Fehler (会曝错) an jedes Programm zurück, das dies versucht. Aber es gibt eine schnelle Problemumgehung – lassen Sie uns eine Warteschlange mit einem anderen Namen deklarieren, zum Beispieltask_queue: 1channel.queue_declare(queue='task_queue', sustainable=True)
Diese queue_declare Änderung muss sowohl auf den Produzenten- als auch auf den Verbrauchercode angewendet werden.At that point we're sure that the task_queue queue won't be lost even if RabbitMQ restarts. Now we need to mark our messages as persistent - by supplying a delivery_mode property with a value 2. 1 channel.basic_publish(exchange='', 上面的英文对消息持久化讲得很好。消息持久化分为两步: 持久化队列。通过代码实现持久化hello队列:channel.queue_declare(queue='hello', durable=True) 持久化队列中的消息。通过代码实现:properties=pika.BasicProperties( delivery_mode = 2, ) 这里有个点要注意下: 如果你在代码中已实现持久化hello队列与队列中的消息。那么你重启rabbitMQ后再次运行代码可能会爆错! 因为: RabbitMQ doesn't allow you to redefine an existing queue with different parameters and will return an error. 为了解决这个问题,可以声明一个与重启rabbitMQ之前不同的队列名(queue_name). 如果Rabbit只管按顺序把消息发到各个消费者身上,不考虑消费者负载的话,很可能出现,一个机器配置不高的消费者那里堆积了很多消息处理不完,同时配置高的消费者却一直很轻松。为解决此问题,可以在各个消费者端,配置perfetch=1,意思就是告诉RabbitMQ在我这个消费者当前消息还没处理完的时候就不要再给我发新消息了。 带消息持久化+公平分发的完整代码 生产者端: 消费者端: 我在运行上面程序时对消费者端里回调函数的一句代码(ch.basic_ack(delivery_tag =method.delivery_tag))十分困惑。这句代码去掉消费者端也能照样收到消息啊。这句代码有毛线用处?? 生产者端消息持久后,需要在消费者端加上(ch.basic_ack(delivery_tag =method.delivery_tag)): 保证消息被消费后,消费端发送一个ack,然后服务端从队列删除该消息. 之前的例子都基本都是1对1的消息发送和接收,即消息只能发送到指定的queue里,但有些时候你想让你的消息被所有的queue收到,类似广播的效果,这时候就要用到exchange了。PS:有兴趣的了解redis的发布与订阅,可以看看我写的博客python之redis。 An exchange is a very simple thing. On one side it receives messages from producers and the other side it pushes them to queues. The exchange must know exactly what to do with a message it receives. Should it be appended to a particular queue? Should it be appended to many queues? Or should it get discarded(丢弃). The rules for that are defined by the exchange type. Exchange在定义的时候是有类型的,以决定到底是哪些Queue符合条件,可以接收消息 fanout: 所有bind到此exchange的queue都可以接收消息 direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息 topic:所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息 表达式符号说明: #代表一个或多个字符,*代表任何字符 下面我分别讲下fanout,direct,topic: 1、fanout fanout: 所有bind到此exchange的queue都可以接收消息 send端: receive端: 有两个点要注意下: fanout-广播,send端的routing_key='', #fanout的话为空(默认) receive端有一句代码:result=channel.queue_declare(exclusive=True),作用:不指定queue名字(为了收广播),rabbitMQ会随机分配一个queue名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除。 2、有选择的接收消息(exchange type=direct) RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。 send端: receive端: 其实最开始我看代码是一脸懵逼的~ 下面是我在cmd进行测试的截图(配合着截图看会容易理解些),一个send端,两个receive端(先起receive端,再起receive端): send端: receive端-1: receive端-2: 3、更细致的消息过滤topic(供参考) Although using the direct exchange improved our system, it still has limitations - it can't do routing based on multiple criteria. In our logging system we might want to subscribe to not only logs based on severity, but also based on the source which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both severity (info/warn/crit...) and facility (auth/cron/kern...). That would give us a lot of flexibility - we may want to listen to just critical errors coming from 'cron' but also all logs from 'kern'. 感觉我英文水平不高啊~,我对照着垃圾有道翻译,加上自己的理解,大概知道上面在讲什么。 举例: 如果是系统的错误,就把信息发送到A,如果是MySQL的错误,就把信息发送到B。但是对B来说,想实现接收MySQL的错误信息,可以用有选择的接收消息(exchange type=direct),让关键字为error就实现了啊!现在B有个需求:不是所有的错误信息都接收,只接收指定的错误。在某种信息再进行过滤,这就是更细致的消息过滤topic。 send端: receive端: RPC的概念可看我百度的(其实就类似我之前做的FTP,我从客户端发一个指令,服务端返回相关信息): 下面重点讲下RPC通信,我刚开始学挺难的,学完之后感觉RPC通信的思想很有启发性,代码的例子写得也很牛!! client端发的消息被server端接收后,server端会调用callback函数,执行任务后,还需要把相应的信息发送到client,但是server如何将信息发还给client?如果有多个client连接server,server又怎么知道是要发给哪个client?? RPC-server默认监听rpc_queue.肯定不能把要发给client端的信息发到rpc_queue吧(rpc_queue是监听client端发到server端的数据)。 合理的方案是server端另起一个queue,通过queue将信息返回给对应client。但问题又来了,queue是server端起的,故client端肯定不知道queue_name,连queue_name都不知道,client端接收毛线的数据?? 解决方法: 客户端在发送指令的同时告诉服务端:任务执行完后,数据通过某队列返回结果。客户端监听该队列就OK了。 client端: server端:
2 routing_key="task_queue",
3 body=message,
4 properties=pika.BasicProperties(
5 delivery_mode = 2, # make message persistent
6 ))
四、消息公平分发
import pika
import sys
connection =pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='task_queue', durable=True) #队列持久化
message = ' '.join(sys.argv[1:]) or"Hello World!"
channel.basic_publish(exchange='',
routing_key='task_queue',
body=message,
properties=pika.BasicProperties(
delivery_mode = 2, # make message persistent消息持久化
))
print(" [x] Sent %r" % message)
connection.close()
#!/usr/bin/env python
import pika
import time
connection =pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='task_queue', durable=True)
print(' [*] Waiting for messages. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
time.sleep(body.count(b'.'))
print(" [x] Done")
ch.basic_ack(delivery_tag =method.delivery_tag)
channel.basic_qos(prefetch_count=1)
channel.basic_consume(callback,
queue='task_queue')
channel.start_consuming()
五、消息发布与订阅
例:#.a会匹配a.a,aa.a,aaa.a等
*.a会匹配a.a,b.a,c.a等
注:使用RoutingKey为#,Exchange Type为topic的时候相当于使用fanoutimport pika
import sys
connection=pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel=connection.channel()
channel.exchange_declare(exchange='logs',
type='fanout')
message=''.join(sys.argv[1:])or"info:HelloWorld!"
channel.basic_publish(exchange='logs',
routing_key='', #fanout的话为空(默认)
body=message)
print("[x]Sent%r"%message)
connection.close()
import pika
connection=pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel=connection.channel()
channel.exchange_declare(exchange='logs',type='fanout')
#不指定queue名字(为了收广播),rabbit会随机分配一个queue名字,
#exclusive=True会在使用此queue的消费者断开后,自动将queue删除
result=channel.queue_declare(exclusive=True)
queue_name=result.method.queue
#把声明的queue绑定到交换器exchange上
channel.queue_bind(exchange='logs',
queue=queue_name)
print('[*]Waitingforlogs.ToexitpressCTRL+C')
def callback(ch,method,properties,body):
print("[x]%r"%body)
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming()
import pika
import sys
connection =pika.BlockingConnection(pika.ConnectionParameters(
host='localh'))ost
channel = connection.channel()
channel.exchange_declare(exchange='direct_logs',
type='direct')
severity = sys.argv[1] iflen(sys.argv) > 1 else 'info'
message = ' '.join(sys.argv[2:]) or'Hello World!'
channel.basic_publish(exchange='direct_logs',
routing_key=severity, #关键字不为空,告知消息发送到哪里(info,error~)
body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close()
import pika
import sys
connection =pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='direct_logs',
type='direct')
result =channel.queue_declare(exclusive=True)
queue_name = result.method.queue
severities = sys.argv[1:]
if not severities:
sys.stderr.write("Usage: %s [info] [warning] [error]\n" %sys.argv[0])
sys.exit(1)
for severity in severities:
channel.queue_bind(exchange='direct_logs',
queue=queue_name,
routing_key=severity)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] %r:%r" %(method.routing_key, body))
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming()
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='topic_logs',
type='topic') #类型为topic
routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='topic_logs',
routing_key=routing_key,
body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='topic_logs',
type='topic')
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
binding_keys = sys.argv[1:]
if not binding_keys:
sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])
sys.exit(1)
for binding_key in binding_keys:
channel.queue_bind(exchange='topic_logs',
queue=queue_name,
routing_key=binding_key)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body))
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming()
六、RPC(Remote Procedure Call)
RPC采用客户机/服务器模式。请求程序就是一个客户机,而服务提供程序就是一个服务器。首先,客户机调用进程发送一个有进程参数的调用信息到服务进程,然后等待应答信息。在服务器端,进程保持睡眠状态直到调用信息的到达为止。当一个调用信息到达,服务器获得进程参数,计算结果,发送答复信息,然后等待下一个调用信息,最后,客户端调用进程接收答复信息,获得进程结果,然后调用执行继续进行。
import pika
import uuid
class FibonacciRpcClient(object):
def init(self):
self.connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
self.channel = self.connection.channel()
#随机建立一个queue,为了监听返回的结果
result = self.channel.queue_declare(exclusive=True)
self.callback_queue = result.method.queue ##队列名
self.channel.basic_consume(self.on_response, #一接收客户端发来的指令就调用回调函数on_response
no_ack=True,
queue=self.callback_queue)
def on_response(self, ch, method, props, body): #回调
#每条指令执行的速度可能不一样,指令1比指令2先发送,但可能指令2的执行结果比指令1先返回到客户端,
#此时如果没有下面的判断,客户端就会把指令2的结果误认为指令1执行的结果
if self.corr_id == props.correlation_id:
self.response = body
def call(self, n):
self.response = None ##指令执行后返回的消息
self.corr_id = str(uuid.uuid4()) ##可用来标识指令(顺序)
self.channel.basic_publish(exchange='',
routing_key='rpc_queue', #client发送指令,发到rpc_queue
properties=pika.BasicProperties(
reply_to=self.callback_queue, #将指令执行结果返回到reply_to队列
correlation_id=self.corr_id,
),
body=str(n))
while self.response is None:
self.connection.process_data_events() #去queue接收数据(不阻塞)
return int(self.response)
fibonacci_rpc = FibonacciRpcClient()
print(" [x] Requesting fib(30)")
response = fibonacci_rpc.call(30)
print(" [.] Got %r" % response)
import pika
import time
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='rpc_queue')
def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n - 1) + fib(n - 2)
def on_request(ch, method, props, body):
n = int(body)
print(" [.] fib(%s)" % n)
response = fib(n) #从客户端收到的消息
ch.basic_publish(exchange='', ##服务端发送返回的数据到props.reply_to队列(客户端发送指令时声明)
routing_key=props.reply_to, #correlation_id (随机数)每条指令都有随机独立的标识符
properties=pika.BasicProperties(correlation_id= \
props.correlation_id),
body=str(response))
ch.basic_ack(delivery_tag=method.delivery_tag) #客户端持久化
channel.basic_qos(prefetch_count=1) #公平分发
channel.basic_consume(on_request, #一接收到消息就调用on_request
queue='rpc_queue')
print(" [x] Awaiting RPC requests")
channel.start_consuming()
Das obige ist der detaillierte Inhalt vonVertiefendes Verständnis der Verwendung von RabbitMQ in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!