Heim >Backend-Entwicklung >Python-Tutorial >So verwenden Sie das Heapq-Modul in Python
Das Heapq-Modul stellt Heap-Algorithmen bereit. heapq ist eine Baumdatenstruktur, in der untergeordnete Knoten und übergeordnete Knoten sortiert sind. Dieses Modul stellt heap[k]
Heapq-Typ drucken
import math import random from cStringIO import StringIO def show_tree(tree, total_width=36, fill=' '): output = StringIO() last_row = -1 for i, n in enumerate(tree): if i: row = int(math.floor(math.log(i+1, 2))) else: row = 0 if row != last_row: output.write('\n') columns = 2**row col_width = int(math.floor((total_width * 1.0) / columns)) output.write(str(n).center(col_width, fill)) last_row = row print output.getvalue() print '-' * total_width print return data = random.sample(range(1,8), 7) print 'data: ', data show_tree(data)
Ergebnis drucken
data: [3, 2, 6, 5, 4, 7, 1] 3 2 6 5 4 7 1 ------------------------- heapq.heappush(heap, item)
Schieben Sie ein Element in den Heap und ändern Sie den obigen Code
heap = [] data = random.sample(range(1,8), 7) print 'data: ', data for i in data: print 'add %3d:' % i heapq.heappush(heap, i) show_tree(heap)
Drucken Sie das Ergebnis aus
data: [6, 1, 5, 4, 3, 7, 2] add 6: 6 ------------------------------------ add 1: 1 6 ------------------------------------ add 5: 1 6 5 ------------------------------------ add 4: 1 4 5 6 ------------------------------------ add 3: 1 3 5 6 4 ------------------------------------ add 7: 1 3 5 6 4 7 ------------------------------------ add 2: 1 3 2 6 4 7 5 ------------------------------------
Anhand der Ergebnisse können wir verstehen, dass die Elemente des untergeordneten Knotens größer sind als die Elemente des übergeordneten Knotens. Geschwisterknoten werden nicht sortiert.
heapq.heapify(list)
Konvertieren Sie den Listentyp in Heap und ordnen Sie die Liste in linearer Zeit neu an.
print 'data: ', data heapq.heapify(data) print 'data: ', data show_tree(data)
Ergebnis drucken
data: [2, 7, 4, 3, 6, 5, 1] data: [1, 3, 2, 7, 6, 5, 4] 1 3 2 7 6 5 4 ------------------------------------ heapq.heappop(heap)
Löschen Sie den kleinsten Wert und geben Sie ihn zurück im Heap Die Elemente werden über heapify() und heappop() sortiert.
data = random.sample(range(1, 8), 7) print 'data: ', data heapq.heapify(data) show_tree(data) heap = [] while data: i = heapq.heappop(data) print 'pop %3d:' % i show_tree(data) heap.append(i) print 'heap: ', heap
Ergebnisse drucken
data: [4, 1, 3, 7, 5, 6, 2] 1 4 2 7 5 6 3 ------------------------------------ pop 1: 2 4 3 7 5 6 ------------------------------------ pop 2: 3 4 6 7 5 ------------------------------------ pop 3: 4 5 6 7 ------------------------------------ pop 4: 5 7 6 ------------------------------------ pop 5: 6 7 ------------------------------------ pop 6: 7 ------------------------------------ pop 7: ------------------------------------ heap: [1, 2, 3, 4, 5, 6, 7]
Sie können sehen, dass es so ist Der sequentielle Heap wurde in die Warteschlange gestellt.
heapq.heapreplace(iterable, n)
Entfernt das vorhandene Element und ersetzt es durch einen neuen Wert.
data = random.sample(range(1, 8), 7) print 'data: ', data heapq.heapify(data) show_tree(data) for n in [8, 9, 10]: smallest = heapq.heapreplace(data, n) print 'replace %2d with %2d:' % (smallest, n) show_tree(data)
Ergebnisse drucken
data: [7, 5, 4, 2, 6, 3, 1] 1 2 3 5 6 7 4 ------------------------------------ replace 1 with 8: 2 5 3 8 6 7 4 ------------------------------------ replace 2 with 9: 3 5 4 8 6 7 9 ------------------------------------ replace 3 with 10: 4 5 7 8 6 10 9 ------------------------------------
heapq.nlargest (n, iterable) und heapq.nsmallest(n, iterable)
geben die n Maximal- und Minimalwerte in der Liste zurück
data = range(1,6) l = heapq.nlargest(3, data) print l # [5, 4, 3] s = heapq.nsmallest(3, data) print s # [1, 2, 3]
PS: Ein Berechnungsproblem
Erstellen eines Minimum-Heap-Codebeispiels mit der Anzahl der Elemente K=5:
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Author: kentzhan # import heapq import random heap = [] heapq.heapify(heap) for i in range(15): item = random.randint(10, 100) print "comeing ", item, if len(heap) >= 5: top_item = heap[0] # smallest in heap if top_item < item: # min heap top_item = heapq.heappop(heap) print "pop", top_item, heapq.heappush(heap, item) print "push", item, else: heapq.heappush(heap, item) print "push", item, pass print heap pass print heap print "sort" heap.sort() print heap
Ergebnis:
Weitere Artikel zur Verwendung des Heapq-Moduls in Python finden Sie auf der chinesischen PHP-Website!