Heim  >  Artikel  >  Backend-Entwicklung  >  Python-Multiprozess-Import von CSV-Daten in

Python-Multiprozess-Import von CSV-Daten in

高洛峰
高洛峰Original
2017-02-28 09:13:391672Durchsuche

Vor einiger Zeit habe ich einem Kollegen geholfen, CSV-Daten in MySQL zu importieren. Zwei große CSV-Dateien, 3 GB mit 21 Millionen Datensätzen bzw. 7 GB mit 35 Millionen Datensätzen. Für Daten dieser Größenordnung würde ein einfacher Einzelprozess-/Einzelthread-Import viel Zeit in Anspruch nehmen, und schließlich wurde für die Implementierung ein Mehrprozessansatz verwendet. Ich werde nicht näher auf den spezifischen Prozess eingehen, aber ein paar wichtige Punkte festhalten:

  1. Fügen Sie stapelweise statt einzeln ein

  2. Um das Einfügen zu beschleunigen, erstellen Sie zunächst keine Indizes

  3. Produzenten- und Verbrauchermodelle, der Hauptprozess liest Dateien und mehrere Arbeitsprozesse führen Einfügungen durch

  4. Achten Sie auf die Kontrolle der Anzahl der Worker, um MySQL nicht zu stark zu belasten

  5. Achten Sie auf Ausnahmen, die durch die Verarbeitung fehlerhafter Daten verursacht werden

  6. Die Originaldaten sind GBK-codiert, achten Sie also auf die Konvertierung in UTF-8

  7. Verwenden Sie einen Klick, um das Befehlszeilentool zu kapseln

Die spezifische Code-Implementierung ist wie folgt:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import codecs
import csv
import logging
import multiprocessing
import os
import warnings

import click
import MySQLdb
import sqlalchemy

warnings.filterwarnings('ignore', category=MySQLdb.Warning)

# 批量插入的记录数量
BATCH = 5000

DB_URI = 'mysql://root@localhost:3306/example?charset=utf8'

engine = sqlalchemy.create_engine(DB_URI)


def get_table_cols(table):
  sql = 'SELECT * FROM `{table}` LIMIT 0'.format(table=table)
  res = engine.execute(sql)
  return res.keys()


def insert_many(table, cols, rows, cursor):
  sql = 'INSERT INTO `{table}` ({cols}) VALUES ({marks})'.format(
      table=table,
      cols=', '.join(cols),
      marks=', '.join(['%s'] * len(cols)))
  cursor.execute(sql, *rows)
  logging.info('process %s inserted %s rows into table %s', os.getpid(), len(rows), table)


def insert_worker(table, cols, queue):
  rows = []
  # 每个子进程创建自己的 engine 对象
  cursor = sqlalchemy.create_engine(DB_URI)
  while True:
    row = queue.get()
    if row is None:
      if rows:
        insert_many(table, cols, rows, cursor)
      break

    rows.append(row)
    if len(rows) == BATCH:
      insert_many(table, cols, rows, cursor)
      rows = []


def insert_parallel(table, reader, w=10):
  cols = get_table_cols(table)

  # 数据队列,主进程读文件并往里写数据,worker 进程从队列读数据
  # 注意一下控制队列的大小,避免消费太慢导致堆积太多数据,占用过多内存
  queue = multiprocessing.Queue(maxsize=w*BATCH*2)
  workers = []
  for i in range(w):
    p = multiprocessing.Process(target=insert_worker, args=(table, cols, queue))
    p.start()
    workers.append(p)
    logging.info('starting # %s worker process, pid: %s...', i + 1, p.pid)

  dirty_data_file = './{}_dirty_rows.csv'.format(table)
  xf = open(dirty_data_file, 'w')
  writer = csv.writer(xf, delimiter=reader.dialect.delimiter)

  for line in reader:
    # 记录并跳过脏数据: 键值数量不一致
    if len(line) != len(cols):
      writer.writerow(line)
      continue

    # 把 None 值替换为 'NULL'
    clean_line = [None if x == 'NULL' else x for x in line]

    # 往队列里写数据
    queue.put(tuple(clean_line))
    if reader.line_num % 500000 == 0:
      logging.info('put %s tasks into queue.', reader.line_num)

  xf.close()

  # 给每个 worker 发送任务结束的信号
  logging.info('send close signal to worker processes')
  for i in range(w):
    queue.put(None)

  for p in workers:
    p.join()


def convert_file_to_utf8(f, rv_file=None):
  if not rv_file:
    name, ext = os.path.splitext(f)
    if isinstance(name, unicode):
      name = name.encode('utf8')
    rv_file = '{}_utf8{}'.format(name, ext)
  logging.info('start to process file %s', f)
  with open(f) as infd:
    with open(rv_file, 'w') as outfd:
      lines = []
      loop = 0
      chunck = 200000
      first_line = infd.readline().strip(codecs.BOM_UTF8).strip() + '\n'
      lines.append(first_line)
      for line in infd:
        clean_line = line.decode('gb18030').encode('utf8')
        clean_line = clean_line.rstrip() + '\n'
        lines.append(clean_line)
        if len(lines) == chunck:
          outfd.writelines(lines)
          lines = []
          loop += 1
          logging.info('processed %s lines.', loop * chunck)

      outfd.writelines(lines)
      logging.info('processed %s lines.', loop * chunck + len(lines))


@click.group()
def cli():
  logging.basicConfig(level=logging.INFO,
            format='%(asctime)s - %(levelname)s - %(name)s - %(message)s')


@cli.command('gbk_to_utf8')
@click.argument('f')
def convert_gbk_to_utf8(f):
  convert_file_to_utf8(f)


@cli.command('load')
@click.option('-t', '--table', required=True, help='表名')
@click.option('-i', '--filename', required=True, help='输入文件')
@click.option('-w', '--workers', default=10, help='worker 数量,默认 10')
def load_fac_day_pro_nos_sal_table(table, filename, workers):
  with open(filename) as fd:
    fd.readline()  # skip header
    reader = csv.reader(fd)
    insert_parallel(table, reader, w=workers)


if __name__ == '__main__':
  cli()

Das Obige ist alles, was ich in diesem Artikel mit Ihnen geteilt habe . Ich hoffe, es gefällt euch allen.

Weitere Informationen zum Python-Multiprozess-Import von CSV-Daten in verwandte Artikel finden Sie auf der chinesischen PHP-Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn