suchen

Python-Graph-Algorithmen

Feb 25, 2017 pm 01:27 PM

这篇文章主要介绍了Python图算法,结合实例形式详细分析了Python数据结构与算法中的图算法实现技巧,需要的朋友可以参考下

本文实例讲述了Python图算法。分享给大家供大家参考,具体如下:

#encoding=utf-8
import networkx,heapq,sys
from matplotlib import pyplot
from collections import defaultdict,OrderedDict
from numpy import array
# Data in graphdata.txt:
# a b  4
# a h  8
# b c  8
# b h  11
# h i  7
# h g  1
# g i  6
# g f  2
# c f  4
# c i  2
# c d  7
# d f  14
# d e  9
# f e  10
def Edge(): return defaultdict(Edge)
class Graph:
  def __init__(self):
    self.Link = Edge()
    self.FileName = ''
    self.Separator = ''
  def MakeLink(self,filename,separator):
    self.FileName = filename
    self.Separator = separator
    graphfile = open(filename,'r')
    for line in graphfile:
      items = line.split(separator)
      self.Link[items[0]][items[1]] = int(items[2])
      self.Link[items[1]][items[0]] = int(items[2])
    graphfile.close()
  def LocalClusteringCoefficient(self,node):
    neighbors = self.Link[node]
    if len(neighbors) <= 1: return 0
    links = 0
    for j in neighbors:
      for k in neighbors:
        if j in self.Link[k]:
          links += 0.5
    return 2.0*links/(len(neighbors)*(len(neighbors)-1))
  def AverageClusteringCoefficient(self):
    total = 0.0
    for node in self.Link.keys():
      total += self.LocalClusteringCoefficient(node)
    return total/len(self.Link.keys())
  def DeepFirstSearch(self,start):
    visitedNodes = []
    todoList = [start]
    while todoList:
      visit = todoList.pop(0)
      if visit not in visitedNodes:
        visitedNodes.append(visit)
        todoList = self.Link[visit].keys() + todoList
    return visitedNodes
  def BreadthFirstSearch(self,start):
    visitedNodes = []
    todoList = [start]
    while todoList:
      visit = todoList.pop(0)
      if visit not in visitedNodes:
        visitedNodes.append(visit)
        todoList = todoList + self.Link[visit].keys()
    return visitedNodes
  def ListAllComponent(self):
    allComponent = []
    visited = {}
    for node in self.Link.iterkeys():
      if node not in visited:
        oneComponent = self.MakeComponent(node,visited)
        allComponent.append(oneComponent)
    return allComponent
  def CheckConnection(self,node1,node2):
    return True if node2 in self.MakeComponent(node1,{}) else False
  def MakeComponent(self,node,visited):
    visited[node] = True
    component = [node]
    for neighbor in self.Link[node]:
      if neighbor not in visited:
        component += self.MakeComponent(neighbor,visited)
    return component
  def MinimumSpanningTree_Kruskal(self,start):
    graphEdges = [line.strip(&#39;\n&#39;).split(self.Separator) for line in open(self.FileName,&#39;r&#39;)]
    nodeSet = {}
    for idx,node in enumerate(self.MakeComponent(start,{})):
      nodeSet[node] = idx
    edgeNumber = 0; totalEdgeNumber = len(nodeSet)-1
    for oneEdge in sorted(graphEdges,key=lambda x:int(x[2]),reverse=False):
      if edgeNumber == totalEdgeNumber: break
      nodeA,nodeB,cost = oneEdge
      if nodeA in nodeSet and nodeSet[nodeA] != nodeSet[nodeB]:
        nodeBSet = nodeSet[nodeB]
        for node in nodeSet.keys():
          if nodeSet[node] == nodeBSet:
            nodeSet[node] = nodeSet[nodeA]
        print nodeA,nodeB,cost
        edgeNumber += 1
  def MinimumSpanningTree_Prim(self,start):
    expandNode = set(self.MakeComponent(start,{}))
    distFromTreeSoFar = {}.fromkeys(expandNode,sys.maxint); distFromTreeSoFar[start] = 0
    linkToNode = {}.fromkeys(expandNode,&#39;&#39;);linkToNode[start] = start
    while expandNode:
      # Find the closest dist node
      closestNode = &#39;&#39;; shortestdistance = sys.maxint;
      for node,dist in distFromTreeSoFar.iteritems():
        if node in expandNode and dist < shortestdistance:
          closestNode,shortestdistance = node,dist
      expandNode.remove(closestNode)
      print linkToNode[closestNode],closestNode,shortestdistance
      for neighbor in self.Link[closestNode].iterkeys():
        recomputedist = self.Link[closestNode][neighbor]
        if recomputedist < distFromTreeSoFar[neighbor]:
          distFromTreeSoFar[neighbor] = recomputedist
          linkToNode[neighbor] = closestNode
  def ShortestPathOne2One(self,start,end):
    pathFromStart = {}
    pathFromStart[start] = [start]
    todoList = [start]
    while todoList:
      current = todoList.pop(0)
      for neighbor in self.Link[current]:
        if neighbor not in pathFromStart:
          pathFromStart[neighbor] = pathFromStart[current] + [neighbor]
          if neighbor == end:
            return pathFromStart[end]
          todoList.append(neighbor)
    return []
  def Centrality(self,node):
    path2All = self.ShortestPathOne2All(node)
    # The average of the distances of all the reachable nodes
    return float(sum([len(path)-1 for path in path2All.itervalues()]))/len(path2All)
  def SingleSourceShortestPath_Dijkstra(self,start):
    expandNode = set(self.MakeComponent(start,{}))
    distFromSourceSoFar = {}.fromkeys(expandNode,sys.maxint); distFromSourceSoFar[start] = 0
    while expandNode:
      # Find the closest dist node
      closestNode = &#39;&#39;; shortestdistance = sys.maxint;
      for node,dist in distFromSourceSoFar.iteritems():
        if node in expandNode and dist < shortestdistance:
          closestNode,shortestdistance = node,dist
      expandNode.remove(closestNode)
      for neighbor in self.Link[closestNode].iterkeys():
        recomputedist = distFromSourceSoFar[closestNode] + self.Link[closestNode][neighbor]
        if recomputedist < distFromSourceSoFar[neighbor]:
          distFromSourceSoFar[neighbor] = recomputedist
    for node in distFromSourceSoFar:
      print start,node,distFromSourceSoFar[node]
  def AllpairsShortestPaths_MatrixMultiplication(self,start):
    nodeIdx = {}; idxNode = {}; 
    for idx,node in enumerate(self.MakeComponent(start,{})):
      nodeIdx[node] = idx; idxNode[idx] = node
    matrixSize = len(nodeIdx)
    MaxInt = 1000
    nodeMatrix = array([[MaxInt]*matrixSize]*matrixSize)
    for node in nodeIdx.iterkeys():
      nodeMatrix[nodeIdx[node]][nodeIdx[node]] = 0
    for line in open(self.FileName,&#39;r&#39;):
      nodeA,nodeB,cost = line.strip(&#39;\n&#39;).split(self.Separator)
      if nodeA in nodeIdx:
        nodeMatrix[nodeIdx[nodeA]][nodeIdx[nodeB]] = int(cost)
        nodeMatrix[nodeIdx[nodeB]][nodeIdx[nodeA]] = int(cost)
    result = array([[0]*matrixSize]*matrixSize)
    for i in xrange(matrixSize):
      for j in xrange(matrixSize):
        result[i][j] = nodeMatrix[i][j]
    for itertime in xrange(2,matrixSize):
      for i in xrange(matrixSize):
        for j in xrange(matrixSize):
          if i==j:
            result[i][j] = 0
            continue
          result[i][j] = MaxInt
          for k in xrange(matrixSize):
            result[i][j] = min(result[i][j],result[i][k]+nodeMatrix[k][j])
    for i in xrange(matrixSize):
      for j in xrange(matrixSize):
        if result[i][j] != MaxInt:
          print idxNode[i],idxNode[j],result[i][j]
  def ShortestPathOne2All(self,start):
    pathFromStart = {}
    pathFromStart[start] = [start]
    todoList = [start]
    while todoList:
      current = todoList.pop(0)
      for neighbor in self.Link[current]:
        if neighbor not in pathFromStart:
          pathFromStart[neighbor] = pathFromStart[current] + [neighbor]
          todoList.append(neighbor)
    return pathFromStart
  def NDegreeNode(self,start,n):
    pathFromStart = {}
    pathFromStart[start] = [start]
    pathLenFromStart = {}
    pathLenFromStart[start] = 0
    todoList = [start]
    while todoList:
      current = todoList.pop(0)
      for neighbor in self.Link[current]:
        if neighbor not in pathFromStart:
          pathFromStart[neighbor] = pathFromStart[current] + [neighbor]
          pathLenFromStart[neighbor] = pathLenFromStart[current] + 1
          if pathLenFromStart[neighbor] <= n+1:
            todoList.append(neighbor)
    for node in pathFromStart.keys():
      if len(pathFromStart[node]) != n+1:
        del pathFromStart[node]
    return pathFromStart
  def Draw(self):
    G = networkx.Graph()
    nodes = self.Link.keys()
    edges = [(node,neighbor) for node in nodes for neighbor in self.Link[node]]
    G.add_edges_from(edges)
    networkx.draw(G)
    pyplot.show()
if __name__==&#39;__main__&#39;:
  separator = &#39;\t&#39;
  filename = &#39;C:\\Users\\Administrator\\Desktop\\graphdata.txt&#39;
  resultfilename = &#39;C:\\Users\\Administrator\\Desktop\\result.txt&#39;
  myGraph = Graph()
  myGraph.MakeLink(filename,separator)
  print &#39;LocalClusteringCoefficient&#39;,myGraph.LocalClusteringCoefficient(&#39;a&#39;)
  print &#39;AverageClusteringCoefficient&#39;,myGraph.AverageClusteringCoefficient()
  print &#39;DeepFirstSearch&#39;,myGraph.DeepFirstSearch(&#39;a&#39;)
  print &#39;BreadthFirstSearch&#39;,myGraph.BreadthFirstSearch(&#39;a&#39;)
  print &#39;ShortestPathOne2One&#39;,myGraph.ShortestPathOne2One(&#39;a&#39;,&#39;d&#39;)
  print &#39;ShortestPathOne2All&#39;,myGraph.ShortestPathOne2All(&#39;a&#39;)
  print &#39;NDegreeNode&#39;,myGraph.NDegreeNode(&#39;a&#39;,3).keys()
  print &#39;ListAllComponent&#39;,myGraph.ListAllComponent()
  print &#39;CheckConnection&#39;,myGraph.CheckConnection(&#39;a&#39;,&#39;f&#39;)
  print &#39;Centrality&#39;,myGraph.Centrality(&#39;c&#39;)
  myGraph.MinimumSpanningTree_Kruskal(&#39;a&#39;)
  myGraph.AllpairsShortestPaths_MatrixMultiplication(&#39;a&#39;)
  myGraph.MinimumSpanningTree_Prim(&#39;a&#39;)
  myGraph.SingleSourceShortestPath_Dijkstra(&#39;a&#39;)
  # myGraph.Draw()

更多Python图算法相关文章请关注PHP中文网!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Was ist Python Switch Anweisung?Was ist Python Switch Anweisung?Apr 30, 2025 pm 02:08 PM

In dem Artikel wird die in Version 3.10 eingeführte "Match" -serklärung von Python erörtert, die als Äquivalent zum Wechseln von Aussagen in anderen Sprachen dient. Es verbessert die Code-Lesbarkeit und bietet Leistungsvorteile gegenüber herkömmlichen IF-ELIF-EL

Was sind Ausnahmegruppen in Python?Was sind Ausnahmegruppen in Python?Apr 30, 2025 pm 02:07 PM

Ausnahmegruppen in Python 3.11 ermöglichen die gleichzeitige Behandlung mehrerer Ausnahmen, wodurch die Fehlermanagement in gleichzeitigen Szenarien und komplexen Vorgängen verbessert wird.

Was sind Funktionsanmerkungen in Python?Was sind Funktionsanmerkungen in Python?Apr 30, 2025 pm 02:06 PM

Funktionsanmerkungen in Python Fügen Sie Metadaten zu Funktionen für Typprüfungen, Dokumentation und IDE -Unterstützung hinzu. Sie verbessern die Lesbarkeit, die Wartung der Code und die API -Entwicklung, die Datenwissenschaft und die Erstellung der Bibliothek von entscheidender Bedeutung.

Was sind Unit -Tests in Python?Was sind Unit -Tests in Python?Apr 30, 2025 pm 02:05 PM

In dem Artikel werden Unit -Tests in Python, deren Vorteile und wie man sie effektiv schreibt, erläutert. Es zeigt Werkzeuge wie Unittest und PyTest zum Testen.

Was sind Zugriffsspezifizierer in Python?Was sind Zugriffsspezifizierer in Python?Apr 30, 2025 pm 02:03 PM

In Artikel werden Zugriffsspezifizierer in Python erörtert, die benennende Konventionen verwenden, um die Sichtbarkeit von Klassenmitgliedern und nicht die strenge Durchsetzung anzuzeigen.

Was ist __init __ () in Python und wie spielt Selbst darin eine Rolle?Was ist __init __ () in Python und wie spielt Selbst darin eine Rolle?Apr 30, 2025 pm 02:02 PM

In Artikel wird die Methode von Python \ _ \ _ init \ _ \ _ () und die Rolle von Self bei der Initialisierung von Objektattributen erörtert. Andere Klassenmethoden und die Auswirkungen der Vererbung auf \ _ \ _ init \ _ \ _ () sind ebenfalls abgedeckt.

Was ist der Unterschied zwischen @ClassMethod, @StaticMethod und Instance -Methoden in Python?Was ist der Unterschied zwischen @ClassMethod, @StaticMethod und Instance -Methoden in Python?Apr 30, 2025 pm 02:01 PM

In dem Artikel werden die Unterschiede zwischen @ClassMethod, @StaticMethod und Instance -Methoden in Python erörtert und ihre Eigenschaften, Anwendungsfälle und Vorteile beschrieben. Es wird erläutert, wie Sie den richtigen Methodentyp basierend auf der erforderlichen Funktionalität und DA auswählen

Wie können Sie Elemente an ein Python -Array anhängen?Wie können Sie Elemente an ein Python -Array anhängen?Apr 30, 2025 am 12:19 AM

Inpython, youAppendElementStoAlistusedtheAppend () Methode.1) UseAppend () ForsingleElelements: my_list.append (4) .2) usextend () oder = formulnElements: my_list.extend (andere_list) ormy_list = [4,5,6] .3) useInSert () FORSPECIFIFICISPositionen: my_list.insert (1,5) .Beaware

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

MantisBT

MantisBT

Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

SublimeText3 Englische Version

SublimeText3 Englische Version

Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor