Heim >Backend-Entwicklung >Python-Tutorial >Python-Operation SQL
pymsql ist ein Modul zum Betrieb von MySQL in Python
1. Laden Sie
pip3 install pymysql
herunter und installieren Sie es 2. Vorgang verwenden
1. SQL ausführen
#!/usr/bin/env python # -*- coding:utf-8 -*- import pymysql # 创建连接 conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') # 创建游标 cursor = conn.cursor() # 执行SQL,并返回收影响行数 effect_row = cursor.execute("update hosts set host = '1.1.1.2'") # 执行SQL,并返回受影响行数 #effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,)) # 执行SQL,并返回受影响行数 #effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) # 提交,不然无法保存新建或者修改的数据 conn.commit() # 关闭游标 cursor.close() # 关闭连接 conn.close()
2. Neu erstellte Daten mit Auto-Inkrement-ID abrufen
#!/usr/bin/env python # -*- coding:utf-8 -*- import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') cursor = conn.cursor() cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) conn.commit() cursor.close() conn.close() # 获取最新自增ID new_id = cursor.lastrowid
Abfragedaten abrufen
#!/usr/bin/env python # -*- coding:utf-8 -*- import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') cursor = conn.cursor() cursor.execute("select * from hosts") # 获取第一行数据 row_1 = cursor.fetchone() # 获取前n行数据 # row_2 = cursor.fetchmany(3) # 获取所有数据 # row_3 = cursor.fetchall() conn.commit() cursor.close() conn.close()
Hinweis: Gehen Sie beim Abrufen von Daten der Reihe nach vor. Sie können die Cursorposition mit „cursor.scroll(num, mode)“ verschieben, z. B.:
cursor.scroll(1, mode). ='relative') # Relativ zur aktuellen Positionsbewegung
cursor.scroll(2,mode='absolute') # Relative absolute Positionsbewegung
Der Abrufdatentyp Die erhaltenen Daten sind Vorfahrentypen oder Wörterbuchtypen, nämlich:
#!/usr/bin/env python # -*- coding:utf-8 -*- import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') # 游标设置为字典类型 cursor = conn.cursor(cursor=pymysql.cursors.DictCursor) r = cursor.execute("call p1()") result = cursor.fetchone() conn.commit() cursor.close() conn.close()
SQLAlchemy
SQLAlchemy ist ein ORM-Framework unter der Programmiersprache Python die Datenbank-API und verwendet die relationale Objektzuordnung für Datenbankoperationen, kurz gesagt: Konvertieren Sie das Objekt in SQL, verwenden Sie dann die Daten-API, um die SQL auszuführen und die Ausführungsergebnisse zu erhalten.
Installation:
pip3 install SQLAlchemy
SQLAlchemy selbst kann die Datenbank nicht betreiben, es muss sich auf Plug-Ins von Drittanbietern verlassen -ins wie pymsql. Dialekt wird verwendet, um mit der Daten-API zu kommunizieren und verschiedene Datenbank-APIs gemäß verschiedenen Konfigurationsdateien aufzurufen, um Vorgänge in der Datenbank durchzuführen, wie zum Beispiel:
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
1. Interne Verarbeitung
Use Engine /ConnectionPooling/Dialect führt Datenbankoperationen durch. Die Engine verwendet ConnectionPooling, um eine Verbindung zur Datenbank herzustellen, und führt dann SQL-Anweisungen über Dialect aus.
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) # 执行SQL # cur = engine.execute( # "INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)" # ) # 新插入行自增ID # cur.lastrowid # 执行SQL # cur = engine.execute( # "INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[('1.1.1.22', 3),('1.1.1.221', 3),] # ) # 执行SQL # cur = engine.execute( # "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)", # host='1.1.1.99', color_id=3 # ) # 执行SQL # cur = engine.execute('select * from hosts') # 获取第一行数据 # cur.fetchone() # 获取第n行数据 # cur.fetchmany(3) # 获取所有数据 # cur.fetchall()
2. Verwendung von ORM-Funktionen
Verwenden Sie alle Komponenten von ORM/Schematyp/SQL-Ausdruckssprache/Engine/ConnectionPooling/Dialekt, um Daten zu bearbeiten. Erstellen Sie Objekte basierend auf Klassen, konvertieren Sie Objekte in SQL und führen Sie SQL aus.
1. Tabelle erstellen
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表 class Users(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String(32)) extra = Column(String(16)) __table_args__ = ( UniqueConstraint('id', 'name', name='uix_id_name'), Index('ix_id_name', 'name', 'extra'), ) # 一对多 class Favor(Base): __tablename__ = 'favor' nid = Column(Integer, primary_key=True) caption = Column(String(50), default='red', unique=True) class Person(Base): __tablename__ = 'person' nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) favor_id = Column(Integer, ForeignKey("favor.nid")) # 多对多 class Group(Base): __tablename__ = 'group' id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) port = Column(Integer, default=22) class Server(Base): __tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) class ServerToGroup(Base): __tablename__ = 'servertogroup' nid = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey('server.id')) group_id = Column(Integer, ForeignKey('group.id')) def init_db(): Base.metadata.create_all(engine) def drop_db(): Base.metadata.drop_all(engine) 注:设置外检的另一种方式 ForeignKeyConstraint(['other_id'], ['othertable.other_id'])
2. Operationstabelle
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表 class Users(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String(32)) extra = Column(String(16)) __table_args__ = ( UniqueConstraint('id', 'name', name='uix_id_name'), Index('ix_id_name', 'name', 'extra'), ) def __repr__(self): return "%s-%s" %(self.id, self.name) # 一对多 class Favor(Base): __tablename__ = 'favor' nid = Column(Integer, primary_key=True) caption = Column(String(50), default='red', unique=True) def __repr__(self): return "%s-%s" %(self.nid, self.caption) class Person(Base): __tablename__ = 'person' nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) favor_id = Column(Integer, ForeignKey("favor.nid")) # 与生成表结构无关,仅用于查询方便 favor = relationship("Favor", backref='pers') # 多对多 class ServerToGroup(Base): __tablename__ = 'servertogroup' nid = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey('server.id')) group_id = Column(Integer, ForeignKey('group.id')) group = relationship("Group", backref='s2g') server = relationship("Server", backref='s2g') class Group(Base): __tablename__ = 'group' id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) port = Column(Integer, default=22) # group = relationship('Group',secondary=ServerToGroup,backref='host_list') class Server(Base): __tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) def init_db(): Base.metadata.create_all(engine) def drop_db(): Base.metadata.drop_all(engine) Session = sessionmaker(bind=engine) session = Session()
obj = Users(name="alex0", extra='sb') session.add(obj) session.add_all([ Users(name="alex1", extra='sb'), Users(name="alex2", extra='sb'), ]) session.commit()
session.query(Users).filter(Users.id > 2).delete() session.commit()
session.query(Users).filter(Users.id > 2).update({"name" : "099"}) session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False) session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate") session.commit()
ret = session.query(Users).all() ret = session.query(Users.name, Users.extra).all() ret = session.query(Users).filter_by(name='alex').all() ret = session.query(Users).filter_by(name='alex').first()
ret = session.query(Users).filter_by(name='alex').all() ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all() ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all() ret = session.query(Users).filter(Users.id.in_([1,3,4])).all() ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all() ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all() from sqlalchemy import and_, or_ ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all() ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all() ret = session.query(Users).filter( or_( Users.id < 2, and_(Users.name == 'eric', Users.id > 3), Users.extra != "" )).all() # 通配符 ret = session.query(Users).filter(Users.name.like('e%')).all() ret = session.query(Users).filter(~Users.name.like('e%')).all() # 限制 ret = session.query(Users)[1:2] # 排序 ret = session.query(Users).order_by(Users.name.desc()).all() ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 分组 from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # 连表 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all() ret = session.query(Person).join(Favor, isouter=True).all() # 组合 q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union_all(q2).all()