Mutex-Sperre ist der einfachste Thread-Synchronisationsmechanismus. Das von Python bereitgestellte Condition-Objekt bietet Unterstützung für komplexe Thread-Synchronisationsprobleme. Bedingung wird als Bedingungsvariable bezeichnet. Zusätzlich zur Bereitstellung von Erfassungs- und Freigabemethoden wie Lock bietet sie auch Warte- und Benachrichtigungsmethoden. Der Thread erfasst zunächst eine Bedingungsvariable und bestimmt dann einige Bedingungen. Wenn die Bedingung nicht erfüllt ist, führen Sie eine Verarbeitung durch, um die Bedingung zu ändern, und benachrichtigen Sie andere Threads über die Benachrichtigungsmethode. Andere Threads im Wartezustand beurteilen die Bedingung erneut, nachdem sie die Benachrichtigung erhalten haben. Dieser Vorgang wird kontinuierlich wiederholt, um komplexe Synchronisationsprobleme zu lösen.
Man kann davon ausgehen, dass das Condition-Objekt eine Sperre (Lock/RLock) und einen Wartepool verwaltet. Der Thread erhält das Condition-Objekt durch Acquire. Wenn die Wartemethode aufgerufen wird, gibt der Thread die Sperre innerhalb der Bedingung auf und wechselt in den blockierten Zustand. Gleichzeitig wird der Thread im Wartepool aufgezeichnet. Wenn die Notify-Methode aufgerufen wird, wählt das Condition-Objekt einen Thread aus dem Wartepool aus und weist ihn an, die Acquire-Methode aufzurufen, um zu versuchen, die Sperre zu erhalten.
Der Konstruktor des Condition-Objekts kann ein Lock/RLock-Objekt als Parameter akzeptieren. Wenn nicht angegeben, erstellt das Condition-Objekt intern ein RLock.
Zusätzlich zur Notify-Methode stellt das Condition-Objekt auch die NotifyAll-Methode bereit, mit der alle Threads im Wartepool benachrichtigt werden können, damit sie versuchen, die interne Sperre zu erhalten. Aufgrund des oben genannten Mechanismus können Threads im Wartezustand nur über die Benachrichtigungsmethode geweckt werden. Die Funktion von notifyAll besteht also darin, zu verhindern, dass Threads für immer in einem stillen Zustand bleiben.
Das klassische Problem, das die Synchronisierung von Bedingungsvariablen demonstriert, ist das Produzenten- und Konsumentenproblem: Angenommen, es gibt eine Gruppe von Produzenten (Produzent) und eine Gruppe von Konsumenten (Konsumer), die über einen Markt mit Produkten interagieren. Die „Strategie“ des Herstellers besteht darin, 100 Produkte zu produzieren und auf den Markt zu bringen, wenn weniger als 1.000 Produkte auf dem Markt sind, während die „Strategie“ des Verbrauchers darin besteht, mehr als 100 Produkte auf dem Markt zu konsumieren. Der Code zur Verwendung von Condition zur Lösung des Problems von Produzenten und Verbrauchern lautet wie folgt:
import threading import time class Producer(threading.Thread): def run(self): global count while True: if con.acquire(): if count > 1000: con.wait() else: count = count+100 msg = self.name+' produce 100, count=' + str(count) print msg con.notify() con.release() time.sleep(1) class Consumer(threading.Thread): def run(self): global count while True: if con.acquire(): if count < 100: con.wait() else: count = count-3 msg = self.name+' consume 3, count='+str(count) print msg con.notify() con.release() time.sleep(1) count = 500 con = threading.Condition() def test(): for i in range(2): p = Producer() p.start() for i in range(5): c = Consumer() c.start() if __name__ == '__main__': test()

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.

Python eignet sich für eine schnelle Entwicklung und Datenverarbeitung, während C für hohe Leistung und zugrunde liegende Kontrolle geeignet ist. 1) Python ist einfach zu bedienen, mit prägnanter Syntax, und eignet sich für Datenwissenschaft und Webentwicklung. 2) C hat eine hohe Leistung und eine genaue Kontrolle und wird häufig bei der Programmierung von Spielen und Systemen verwendet.

Die Zeit, die zum Erlernen von Python erforderlich ist, variiert von Person zu Person, hauptsächlich von früheren Programmiererfahrungen, Lernmotivation, Lernressourcen und -methoden und Lernrhythmus. Setzen Sie realistische Lernziele und lernen Sie durch praktische Projekte am besten.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung