


Ich habe kürzlich Python für Schnittstellentests verwendet und festgestellt, dass es in Python viele HTTP-Anforderungsmethoden gibt. Heute habe ich mir etwas Zeit genommen, den relevanten Inhalt zu sortieren und ihn mit Ihnen zu teilen:
1. Python-Autokonfiguration mit Bibliothek ---- urllib2
Pythons eigene Bibliothek urllib2 wird häufiger verwendet:
import urllib2
response = urllib2.urlopen('http://localhost:8080/jenkins/api/json?pretty=true')
print Response.read()
Einfache Get-Anfrage
urllib2 importieren
urllib importieren
post_data = urllib.urlencode({})
response = urllib2.urlopen('http://localhost: 8080/, post_data)
print Response.read()
print Response.getheaders()
Dies ist das einfachste Beispiel für das Senden eines Beitrags durch urllib2. Es gibt viele Codes
2. Pythons eigene Bibliothek - httplib
httplib ist ein http-Anforderungsmodul auf relativ niedriger Ebene, und urlib ist basierend auf httplib gekapselt. Die einfache Verwendung ist wie folgt:
import httplib conn = httplib.HTTPConnection("www.python.org") conn.request("GET", "/index.html") r1 = conn.getresponse() print r1.status, r1.reason data1 = r1.read() conn.request("GET", "/parrot.spam") r2 = conn.getresponse() data2 = r2.read() conn.close()
Einfache Get-Anfrage
Sehen wir uns die Post-Anfrage an
import httplib, urllib params = urllib.urlencode({'@number': 12524, '@type': 'issue', '@action': 'show'}) headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"} conn = httplib.HTTPConnection("bugs.python.org") conn.request("POST", "", params, headers) response = conn.getresponse() data = response.read() print data conn.close()
, um zu sehen, ob sie zu kompliziert ist. Sie müssen das Dokument jedes Mal lesen, wenn Sie schreiben. Werfen wir einen Blick auf das dritte.
3 Drittanbieter-Bibliothek – Anfragen
Das Senden einer Get-Anfrage ist ganz einfach:
print requests.get('http://localhost:8080).text
Nur ein Satz, werfen wir einen Blick auf die Post-Anfrage
payload = {'key1': 'value1', 'key2': 'value2'} r = requests.post("http://httpbin.org/post", data=payload) print r.text
Es ist auch ganz einfach.
Lassen Sie uns noch einmal einen Blick darauf werfen, ob Sie sich authentifizieren möchten:
url = 'http://localhost:8080' r = requests.post(url, data={}, auth=HTTPBasicAuth('admin', 'admin')) print r.status_code print r.headers print r.reason
Ist es nicht viel einfacher als urllib2, und Anfragen kommen mit JSON-Parsing? Das ist großartig
http-Anfrage in Python
import urllib params = urllib.urlencode({key:value,key:value}) resultHtml = urllib.urlopen('[API or 网址]',params) result = resultHtml.read() print result

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Zu den realen Anwendungen von Python gehören Datenanalysen, Webentwicklung, künstliche Intelligenz und Automatisierung. 1) In der Datenanalyse verwendet Python Pandas und Matplotlib, um Daten zu verarbeiten und zu visualisieren. 2) In der Webentwicklung vereinfachen Django und Flask Frameworks die Erstellung von Webanwendungen. 3) Auf dem Gebiet der künstlichen Intelligenz werden Tensorflow und Pytorch verwendet, um Modelle zu bauen und zu trainieren. 4) In Bezug auf die Automatisierung können Python -Skripte für Aufgaben wie das Kopieren von Dateien verwendet werden.

Python wird häufig in den Bereichen Data Science, Web Development und Automation Scripting verwendet. 1) In der Datenwissenschaft vereinfacht Python die Datenverarbeitung und -analyse durch Bibliotheken wie Numpy und Pandas. 2) In der Webentwicklung ermöglichen die Django- und Flask -Frameworks Entwicklern, Anwendungen schnell zu erstellen. 3) In automatisierten Skripten machen Pythons Einfachheit und Standardbibliothek es ideal.

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

Dreamweaver Mac
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)