suchen
HeimBackend-EntwicklungPython-Tutorial小议Python中自定义函数的可变参数的使用及注意点

可变参数

Python的可变参数有两种,一种是列表类型,一种是字典类型。列表类型类似 C 中的可变参数,定义方式为

def test_list_param(*args) :
  for arg in args :
    print arg

其中 args 是一个 tuple。
字典类型的可变参数:

def test_dict_param(**args) :
  for k, v in args.iteritems() :
    print k, v

其中 args 是一个 dictionary
可以分别传递 tuple 和 dictionary 给相应的可变参数,格式如下

a = (1, 2, 3)
b = {"a":1, "b":2, "msg":"hello"}
test_list_param(*a)
test_dict_param(**b)

带默认参数的函数

函数的带默认值参数能够很大程度上方便我们使用:一般情况下可以省略传参使用参数的默认值,也可以主动传参;调用的时候也不用在意参数的顺序方便使用,并且直接、显式;甚至还能用来当作魔法值,做一些逻辑上的控制。

但是由于python的默认值参数只会在函数定义处被解析一次,此后每次调用函数的时候,默认值参数都会是这个值了。碰到一些不可变的数据类型比如:整型,字符串,元祖之类的还好,但如果碰到可变类型的数据比如数组的话,就会有发生一些意想不到的事情。
让我们举一个简单的例子说明一下:

def add_to(num, target=[]):
  target.append(num)
  print id(target), target

add_to(1)
# Output: 39003656, [1]
add_to(2)
# Output: 39003656, [1, 2]
add_to(3)
# Output: 39003656, [1, 2, 3]

很显然如果你是想每次调用函数都能得到一个新的包含期望结果的数组,肯定不能如愿了。函数add_to的参数target在函数第一次被解析的时候会被赋值成空的数组,因为只会被解析一次,以后每次调用的时候都会在这个target变量的基础上进行操作,变量的id值也完全一样。想要得到预期的结果,可以为这种可变数据类型的参数指定一个None来表示空值:

a = (1, 2, 3)
b = {"a":1, "b":2, "msg":"hello"}
test_list_param(*a)
test_dict_param(**b)

在python的世界里,参数是按标识符传递(粗暴点解释就是按引用传递的),你需要担心的是参数的类型是否是可变的:

>>> def test(param1, param2):
...   print id(param1), id(param2)
...   param1 += 1
...   param2 += 1
...   print id(param1), id(param2)
...
>>> var1 = 1
>>> var2 = 2
>>> print id(var1), id(var2)
36862728 36862704
>>> test(var1, var2)
36862728 36862704
36862704 36862680

可变的数据类型,函数局部作用域里面的任何改变会保留在数据上;不可变的数据类型,发生的任何改变都只会体现在新生成的局部变量上,如同上面的列子中所示的效果,读者可以对比一下。

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Python vs. C: Lernkurven und BenutzerfreundlichkeitPython vs. C: Lernkurven und BenutzerfreundlichkeitApr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python vs. C: Speicherverwaltung und KontrollePython vs. C: Speicherverwaltung und KontrolleApr 19, 2025 am 12:17 AM

Python und C haben signifikante Unterschiede in der Speicherverwaltung und -kontrolle. 1. Python verwendet die automatische Speicherverwaltung, basierend auf der Referenzzählung und der Müllsammlung, um die Arbeit von Programmierern zu vereinfachen. 2.C erfordert eine manuelle Speicherverwaltung und liefert mehr Kontrolle, aber die Komplexität und das Fehlerrisiko. Welche Sprache zu wählen sollte, sollte auf Projektanforderungen und Teamtechnologie -Stack basieren.

Python für wissenschaftliches Computer: Ein detailliertes AussehenPython für wissenschaftliches Computer: Ein detailliertes AussehenApr 19, 2025 am 12:15 AM

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Python und C: Das richtige Werkzeug findenPython und C: Das richtige Werkzeug findenApr 19, 2025 am 12:04 AM

Ob die Auswahl von Python oder C von den Projektanforderungen abhängt: 1) Python eignet sich aufgrund seiner prägnanten Syntax und reichhaltigen Bibliotheken für schnelle Entwicklung, Datenwissenschaft und Skripten; 2) C ist für Szenarien geeignet, die aufgrund seiner Zusammenstellung und des manuellen Speichermanagements eine hohe Leistung und die zugrunde liegende Kontrolle erfordern, wie z. B. Systemprogrammierung und Spielentwicklung.

Python für Datenwissenschaft und maschinelles LernenPython für Datenwissenschaft und maschinelles LernenApr 19, 2025 am 12:02 AM

Python wird in Datenwissenschaft und maschinellem Lernen häufig verwendet, wobei hauptsächlich auf seine Einfachheit und ein leistungsstarkes Bibliotheksökosystem beruhen. 1) Pandas wird zur Datenverarbeitung und -analyse verwendet, 2) Numpy liefert effiziente numerische Berechnungen, und 3) Scikit-Learn wird für die Konstruktion und Optimierung des maschinellen Lernens verwendet. Diese Bibliotheken machen Python zu einem idealen Werkzeug für Datenwissenschaft und maschinelles Lernen.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend?Python lernen: Ist 2 Stunden tägliches Studium ausreichend?Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python für die Webentwicklung: SchlüsselanwendungenPython für die Webentwicklung: SchlüsselanwendungenApr 18, 2025 am 12:20 AM

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python vs. C: Erforschung von Leistung und Effizienz erforschenPython vs. C: Erforschung von Leistung und Effizienz erforschenApr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

Dreamweaver Mac

Dreamweaver Mac

Visuelle Webentwicklungstools

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

mPDF

mPDF

mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

SAP NetWeaver Server-Adapter für Eclipse

SAP NetWeaver Server-Adapter für Eclipse

Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.