Heim >Web-Frontend >js-Tutorial >WebGL verwendet FBO, um das vollständige Beispiel für den Cube-Map-Effekt (mit Download des Demo-Quellcodes)_Javascript-Kenntnisse zu vervollständigen
Das Beispiel in diesem Artikel beschreibt, wie WebGL FBO verwendet, um den Cube-Map-Effekt zu vervollständigen. Teilen Sie es als Referenz mit allen. Die Details lauten wie folgt:
In diesem Artikel werden hauptsächlich einige grundlegende Punkte von WebGL beschrieben und auch die Verwendung von FBO und Umgebungskarten erläutert. Werfen wir zunächst einen Blick auf die Renderings (erfordert Unterstützung für WebGL, Chrome, Firefox und IE11).
Der Hauptimplementierungsprozess ist wie folgt: Verwenden Sie zuerst FBO, um die aktuelle Umgebung in der Würfeltextur auszugeben, zeichnen Sie dann den aktuellen Würfel und schließlich die Kugel und fügen Sie die mit dem FBO verknüpfte Textur in die Kugel ein.
Wenn Sie WebGL starten, ist es am besten, über einige OpenGL-Grundlagen zu verfügen. Als Sie zuvor über Obj-Perfektion und MD2 gesprochen haben, haben Sie möglicherweise festgestellt, dass aufgrund der Hinzufügung und Verwendung von Shader die meisten OpenGL-APIs nicht mehr verwendet werden. Die meisten Funktionen sind Shader, die die Hauptfunktionen vervollständigen. Sie können sie mit den vorherigen vergleichen, um sich mit den Grundfunktionen von WebGL vertraut zu machen Der Artikel verwendet kein relativ vollständiges Framework (gl-matrix.js), um die Berechnung von Matrizen zu unterstützen.
Ähnlich wie bei der Verwendung von OpenGL müssen wir die Nutzungsumgebung initialisieren und einige globale Nutzungen extrahieren. Der relevante Code lautet wie folgt:
Initialisierung:
var gl;//WebGLRenderingContext var cubeVBO;//Cube buffer ID var sphereVBO;//球体VBO var sphereEBO;//球体EBO var cubeTexID;//立方体纹理ID var fboBuffer;//桢缓存对象 var glCubeProgram;//立方体着色器应用 var glSphereProgram;//球体着色器应用 var fboWidth = 512;//桢缓存绑定纹理宽度 var fboHeight = 512;//桢缓存绑定纹理高度 var targets;//立方体贴图六个方向 var pMatrix = mat4.create();//透视矩阵 var vMatrix = mat4.create();//视图矩阵 var eyePos = vec3.fromValues(0.0, 1.0, 0.0);//眼睛位置 var eyeLookat = vec3.fromValues(0.0, -0.0, 0.0);//眼睛方向 var spherePos = vec3.fromValues(0.0, -0.0, 0.0);//球体位置 var canvanName; function webGLStart(cName) { canvanName = cName; InitWebGL(); InitCubeShader(); InitSphereShader(); InitCubeBuffer(); InitSphereBuffer(); InitFBOCube(); //RenderFBO(); gl.clearColor(0.0, 0.0, 0.0, 1.0); gl.enable(gl.DEPTH_TEST); tick(); } function InitWebGL() { //var canvas = document.getElementById(canvanName); InitGL(canvanName); } function InitGL(canvas) { try { //WebGLRenderingContext gl = canvas.getContext("experimental-webgl"); gl.viewportWidth = canvas.width; gl.viewportHeight = canvas.height; targets = [gl.TEXTURE_CUBE_MAP_POSITIVE_X, gl.TEXTURE_CUBE_MAP_NEGATIVE_X, gl.TEXTURE_CUBE_MAP_POSITIVE_Y, gl.TEXTURE_CUBE_MAP_NEGATIVE_Y, gl.TEXTURE_CUBE_MAP_POSITIVE_Z, gl.TEXTURE_CUBE_MAP_NEGATIVE_Z]; } catch (e) { } if (!gl) { alert("你的浏览器不支持WebGL"); } }
Hier initialisieren wir die obere und untere Umgebung von WebGL auf der Webseite und führen eine Reihe von Initialisierungsprozessen durch. Der Raum bzw. der entsprechende Code für den Würfel ist unten angegeben.
Würfel:
function InitCubeShader() { //WebGLShader var shader_vertex = GetShader("cubeshader-vs"); var shader_fragment = GetShader("cubeshader-fs"); //WebglCubeProgram glCubeProgram = gl.createProgram(); gl.attachShader(glCubeProgram, shader_vertex); gl.attachShader(glCubeProgram, shader_fragment); gl.linkProgram(glCubeProgram); if (!gl.getProgramParameter(glCubeProgram, gl.LINK_STATUS)) { alert("Shader hava error."); } gl.useProgram(glCubeProgram); glCubeProgram.positionAttribute = gl.getAttribLocation(glCubeProgram, "a_position"); glCubeProgram.normalAttribute = gl.getAttribLocation(glCubeProgram, "a_normal"); glCubeProgram.texCoordAttribute = gl.getAttribLocation(glCubeProgram, "a_texCoord"); glCubeProgram.view = gl.getUniformLocation(glCubeProgram, "view"); glCubeProgram.perspective = gl.getUniformLocation(glCubeProgram, "perspective"); } function InitCubeBuffer() { var cubeData = [ -10.0, -10.0, -10.0, 0.0, 0.0, -10.0, 1.0, 0.0, -10.0, 10.0, -10.0, 0.0, 0.0, -10.0, 1.0, 1.0, 10.0, 10.0, -10.0, 0.0, 0.0, -10.0, 0.0, 1.0, 10.0, 10.0, -10.0, 0.0, 0.0, -10.0, 0.0, 1.0, 10.0, -10.0, -10.0, 0.0, 0.0, -10.0, 0.0, 0.0, -10.0, -10.0, -10.0, 0.0, 0.0, -10.0, 1.0, 0.0, -10.0, -10.0, 10.0, 0.0, 0.0, 10.0, 0.0, 0.0, 10.0, -10.0, 10.0, 0.0, 0.0, 10.0, 1.0, 0.0, 10.0, 10.0, 10.0, 0.0, 0.0, 10.0, 1.0, 1.0, 10.0, 10.0, 10.0, 0.0, 0.0, 10.0, 1.0, 1.0, -10.0, 10.0, 10.0, 0.0, 0.0, 10.0, 0.0, 1.0, -10.0, -10.0, 10.0, 0.0, 0.0, 10.0, 0.0, 0.0, -10.0, -10.0, -10.0, 0.0, -10.0, 0.0, 0.0, 0.0, 10.0, -10.0, -10.0, 0.0, -10.0, 0.0, 1.0, 0.0, 10.0, -10.0, 10.0, 0.0, -10.0, 0.0, 1.0, 1.0, 10.0, -10.0, 10.0, 0.0, -10.0, 0.0, 1.0, 1.0, -10.0, -10.0, 10.0, 0.0, -10.0, 0.0, 0.0, 1.0, -10.0, -10.0, -10.0, 0.0, -10.0, 0.0, 0.0, 0.0, 10.0, -10.0, -10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 10.0, 10.0, -10.0, 10.0, 0.0, 0.0, 1.0, 0.0, 10.0, 10.0, 10.0, 10.0, 0.0, 0.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 0.0, 0.0, 1.0, 1.0, 10.0, -10.0, 10.0, 10.0, 0.0, 0.0, 0.0, 1.0, 10.0, -10.0, -10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 10.0, 10.0, -10.0, 0.0, 10.0, 0.0, 0.0, 0.0, -10.0, 10.0, -10.0, 0.0, 10.0, 0.0, 1.0, 0.0, -10.0, 10.0, 10.0, 0.0, 10.0, 0.0, 1.0, 1.0, -10.0, 10.0, 10.0, 0.0, 10.0, 0.0, 1.0, 1.0, 10.0, 10.0, 10.0, 0.0, 10.0, 0.0, 0.0, 1.0, 10.0, 10.0, -10.0, 0.0, 10.0, 0.0, 0.0, 0.0, -10.0, 10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 0.0, -10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 1.0, 0.0, -10.0, -10.0, 10.0, -10.0, 0.0, 0.0, 1.0, 1.0, -10.0, -10.0, 10.0, -10.0, 0.0, 0.0, 1.0, 1.0, -10.0, 10.0, 10.0, -10.0, 0.0, 0.0, 0.0, 1.0, -10.0, 10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 0.0, ]; cubeVBO = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, cubeVBO); gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(cubeData), gl.STATIC_DRAW); } function RenderCube() { gl.useProgram(glCubeProgram); gl.bindBuffer(gl.ARRAY_BUFFER, cubeVBO); gl.vertexAttribPointer(glCubeProgram.positionAttribute, 3, gl.FLOAT, false, 32, 0); gl.enableVertexAttribArray(glCubeProgram.positionAttribute); gl.vertexAttribPointer(glCubeProgram.normalAttribute, 3, gl.FLOAT, false, 32, 12); gl.enableVertexAttribArray(glCubeProgram.normalAttribute); gl.vertexAttribPointer(glCubeProgram.texCoordAttribute, 2, gl.FLOAT, false, 32, 24); gl.enableVertexAttribArray(glCubeProgram.texCoordAttribute); gl.uniformMatrix4fv(glCubeProgram.view, false, vMatrix); gl.uniformMatrix4fv(glCubeProgram.perspective, false, pMatrix); gl.drawArrays(gl.TRIANGLES, 0, 36); }
Der obige Code ist hauptsächlich in die Initialisierung des Shader-Objekts des Cubes, die Initialisierung des entsprechenden Caches und das anschließende Zeichnen des Cubes unterteilt. Man kann sagen, dass der Vorgang in Opengl ähnlich ist, wenn Sie einen Shader zum Zeichnen verwenden. In Opengl gibt es keine feste Pipeline. Einige Funktionen wie InterleavedArrays werden zum Angeben von Scheitelpunkten, Normalen oder Texturen verwendet, und vertexAttribPointer wird zum Übertragen von Daten zwischen der Anwendung und dem Shader verwendet. Die verbesserte Version der Parameterübertragung in der vorherigen MD2-Frame-Animationsimplementierung hat auch verwandte Anwendungen.
Der dem Cube-Shader entsprechende Hauptcode lautet wie folgt:
Cube-Shader-Implementierung:
<script id="cubeshader-fs" type="x-shader/x-fragment"> precision mediump float; varying vec3 normal; varying vec3 tex1; varying vec3 tex2; void main( void ) { float x = tex1.x * 6.28 * 8.0; //2兀 * 8 float y = tex1.y * 6.28 * 8.0; //2兀 * 8 //cos(x)= 8个 (1 -1 1) gl_FragColor = vec4(tex2,1.0) * vec4(sign(cos(x)+cos(y))); // //gl_FragColor = vec4(normal*vec3(0.5)+vec3(0.5), 1); } </script> <script id="cubeshader-vs" type="x-shader/x-vertex"> attribute vec3 a_position; attribute vec3 a_normal; attribute vec2 a_texCoord; uniform mat4 view; uniform mat4 perspective; varying vec3 normal; varying vec3 tex1; varying vec3 tex2; void main( void ) { gl_Position = perspective * view * vec4(a_position,1.0); normal = a_normal; tex1 = vec3(a_texCoord,0.0); tex2 = normalize(a_position)*0.5+0.5; } </script>
Im Shader gibt es keine ftransform()-Funktion zum Aufrufen. Sie müssen das Modell, die Ansicht und die Perspektivenmatrix selbst übergeben. Hier wird das Modell mit dem Ursprung als Zentrum gezeichnet, was die Modellansichtsmatrix bedeutet ist auch die Ansichtsmatrix, daher sind für die Berechnung der Bildschirmposition nur die Ansichts- und Perspektivenmatrizen erforderlich. Im Fragment-Shader werden x und y von den Texturkoordinaten im Vertex-Shader übergeben. Der entsprechende Prozess beträgt 8 360 Grad. Er wird verwendet, um die Anzeige von Blöcken auf dem Würfel zu steuern ist im Shader Der Wert der Vertex-Zuordnung [0,1] legt jeweils unterschiedliche Bedeutungen für die sechs Seiten des Würfels fest und verwendet dann das Produkt zweier Vektoren, um die beiden Farbanzeigen zu mischen, gl_FragColor = vec4(tex2,1.0) * vec4(sign( cos(x) cos(y))).
Bevor Sie die Kugel anzeigen, sollten Sie zunächst die Würfelzeichnung der aktuellen Umgebung erstellen. Erstellen Sie hier zuerst den Rahmencache und die Würfelzeichnung und verknüpfen Sie sie dann mit dem Ursprung. nach unten, links, vorne und rechts und dann verwenden Der Bildpuffer wird jeweils an die sechs Flächen des Würfels ausgegeben. Der Hauptcode lautet wie folgt:
FBO- und Würfeltextur:
function InitFBOCube() { // WebGLFramebuffer fboBuffer = gl.createFramebuffer(); gl.bindFramebuffer(gl.FRAMEBUFFER, fboBuffer); fboBuffer.width = 512; fboBuffer.height = 512; cubeTexID = gl.createTexture(); gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeTexID); gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MIN_FILTER, gl.LINEAR); gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MAG_FILTER, gl.LINEAR); for (var i = 0; i < targets.length; i++) { gl.texImage2D(targets[i], 0, gl.RGBA, fboBuffer.width, fboBuffer.height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null); } gl.bindFramebuffer(gl.FRAMEBUFFER, null); } function RenderFBO() { gl.disable(gl.DEPTH_TEST); gl.viewport(0, 0, fboBuffer.width, fboBuffer.height); gl.clearColor(0.0, 0.0, 0.0, 1.0); gl.bindFramebuffer(gl.FRAMEBUFFER, fboBuffer); for (var i = 0; i < targets.length; i++) { gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, targets[i], cubeTexID, null); gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); } mat4.perspective(pMatrix, 45, fboBuffer.width / fboBuffer.height, 0.1, 100.0); for (var i = 0; i < targets.length; i++) { gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, targets[i], cubeTexID, null); var lookat = vec3.create(); var up = vec3.create(); up[1] = 1.0; if (i == 0) { lookat[0] = -1.0; } else if (i == 1) { lookat[0] = 1.0; } else if (i == 2) { lookat[1] = -1.0; up[0] = 1.0; } else if (i == 3) { lookat[1] = 1.0; up[0] = 1.0; } else if (i == 4) { lookat[2] == -1.0; } else if (i == 5) { lookat[2] = 1.0; } else { } //vec3.fromValues(0.0, 0.0, 0.0) vMatrix = mat4.create(); mat4.lookAt(vMatrix, vec3.fromValues(0.0, 0.0, 0.0), lookat, up); //mat4.scale(vMatrix, vMatrix, vec3.fromValues(-1.0, -1.0, -1.0)); //mat4.translate(vMatrix, vMatrix, spherePos); RenderCube(); } gl.bindFramebuffer(gl.FRAMEBUFFER, null); gl.enable(gl.DEPTH_TEST); }
Ich weiß nicht, ob es ein Problem mit dem oben von gl-matrix bereitgestellten Matrixalgorithmus gibt, oder ob es so sein sollte. Die beim Hoch- und Runterfahren erzeugte Texturkarte ist falsch und der Aufwärtsvektor der Kamera muss abgelenkt werden. Da die Kameraposition parallel zur generierten Z-Achse des Ziels und der eingestellten UP-Achse ist, kann die X-Achse nicht korrekt berechnet werden und auch die entsprechende UP-Achse kann nicht berechnet werden, was zu einem Fehler in der entsprechenden Ansichtsmatrix führt.
Der letzte Schritt besteht darin, die Kugel zu zeichnen. Der Code ähnelt hauptsächlich dem des Würfels.
Kugel:
function InitSphereShader() { //WebGLShader var shader_vertex = GetShader("sphereshader-vs"); var shader_fragment = GetShader("sphereshader-fs"); //WebglCubeProgram glSphereProgram = gl.createProgram(); gl.attachShader(glSphereProgram, shader_vertex); gl.attachShader(glSphereProgram, shader_fragment); gl.linkProgram(glSphereProgram); if (!gl.getProgramParameter(glSphereProgram, gl.LINK_STATUS)) { alert("Shader hava error."); } glSphereProgram.positionAttribute = gl.getAttribLocation(glSphereProgram, "a_position"); glSphereProgram.normalAttribute = gl.getAttribLocation(glSphereProgram, "a_normal"); glSphereProgram.eye = gl.getUniformLocation(glSphereProgram, "eye"); glSphereProgram.mapCube = gl.getUniformLocation(glSphereProgram, "mapCube"); glSphereProgram.model = gl.getUniformLocation(glSphereProgram, "model"); glSphereProgram.view = gl.getUniformLocation(glSphereProgram, "view"); glSphereProgram.perspective = gl.getUniformLocation(glSphereProgram, "perspective"); } function InitSphereBuffer() { var radius = 1; var segments = 16; var rings = 16; var length = segments * rings * 6; var sphereData = new Array(); var sphereIndex = new Array(); for (var y = 0; y < rings; y++) { var phi = (y / (rings - 1)) * Math.PI; for (var x = 0; x < segments; x++) { var theta = (x / (segments - 1)) * 2 * Math.PI; sphereData.push(radius * Math.sin(phi) * Math.cos(theta)); sphereData.push(radius * Math.cos(phi)); sphereData.push(radius * Math.sin(phi) * Math.sin(theta)); sphereData.push(Math.sin(phi) * Math.cos(theta)); sphereData.push(radius * Math.cos(phi)) sphereData.push(Math.sin(phi) * Math.sin(theta)); } } for (var y = 0; y < rings - 1; y++) { for (var x = 0; x < segments - 1; x++) { sphereIndex.push((y + 0) * segments + x); sphereIndex.push((y + 1) * segments + x); sphereIndex.push((y + 1) * segments + x + 1); sphereIndex.push((y + 1) * segments + x + 1); sphereIndex.push((y + 0) * segments + x + 1) sphereIndex.push((y + 0) * segments + x); } } sphereVBO = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, sphereVBO); gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(sphereData), gl.STATIC_DRAW); sphereVBO.numItems = segments * rings; sphereEBO = gl.createBuffer(); gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, sphereEBO); gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(sphereIndex), gl.STATIC_DRAW); sphereEBO.numItems = sphereIndex.length; } function RenderSphere() { gl.useProgram(glSphereProgram); gl.bindBuffer(gl.ARRAY_BUFFER, sphereVBO); gl.vertexAttribPointer(glSphereProgram.positionAttribute, 3, gl.FLOAT, false, 24, 0); gl.enableVertexAttribArray(glSphereProgram.positionAttribute); gl.vertexAttribPointer(glSphereProgram.normalAttribute, 3, gl.FLOAT, false, 24, 12); gl.enableVertexAttribArray(glSphereProgram.normalAttribute); var mMatrix = mat4.create(); mat4.translate(mMatrix, mMatrix, spherePos); gl.uniform3f(glSphereProgram.eye, eyePos[0],eyePos[1],eyePos[2]); gl.uniformMatrix4fv(glSphereProgram.model, false, mMatrix); gl.uniformMatrix4fv(glSphereProgram.view, false, vMatrix); gl.uniformMatrix4fv(glSphereProgram.perspective, false, pMatrix); gl.activeTexture(gl.TEXTURE0); gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeTexID); //gl.uniformMatrix4fv(glSphereProgram.mapCube, 0); gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, sphereEBO); gl.drawElements(gl.TRIANGLES, sphereEBO.numItems, gl.UNSIGNED_SHORT, 0); gl.bindTexture(gl.TEXTURE_2D, null); }
Wie Sie sehen können, sind es die gleichen drei Schritte wie beim Würfel: Initialisieren des Shaders, Initialisieren der Scheitelpunkte und Normalen und Zeichnen. Der Shader-Code ist unten angegeben:
Kugel-Shader:
<script id="sphereshader-fs" type="x-shader/x-fragment"> precision mediump float; varying vec3 normal; varying vec3 eyevec; uniform samplerCube mapCube; void main( void ) { gl_FragColor = textureCube(mapCube, reflect(normalize(-eyevec), normalize(normal))); } </script> <script id="sphereshader-vs" type="x-shader/x-vertex"> attribute vec3 a_position; attribute vec3 a_normal; uniform mat4 model; uniform mat4 view; uniform mat4 perspective; uniform vec3 eye; varying vec3 normal; varying vec3 eyevec; void main( void ) { gl_Position = perspective * view * model * vec4(a_position,1.0); eyevec = -eye;// a_position.xyz; normal = a_normal; } </script>
Ein kleiner Unterschied zum vorherigen Würfel besteht darin, dass die Kugel eine eigene Modellmatrix hat, was ebenfalls eine normale Verwendung ist. Dann werden das dem Kugelscheitelpunktvektor und der Normale entsprechende Auge im Fragment-Shader übergeben. Dies ist nützlich für die zuvor generierte Würfeltextur. Wir können die Umgebungsfarbe entsprechend dem Punkt auf der Würfeltextur erhalten, der durch den Scheitelpunkt verläuft und den entsprechenden Normalenvektor widerspiegelt Um den oben erwähnten Prozess abzuschließen, müssen wir ihn nicht manuell berechnen.
Informationen zur Verwendung der GetShader-Funktion finden Sie in der Erklärung hier http://msdn.microsoft.com/zh-TW/library/ie/dn302360(v=vs.85).
Man kann sagen, dass die obige Hauptzeichnungsfunktion abgeschlossen ist, unsere jedoch aktiv ist, sodass wir simulieren müssen, wie oft die Clientumgebung gezeichnet wird. Der Hauptcode lautet wie folgt:
Animation:
function tick() { Update(); OnDraw(); setTimeout(function () { tick() }, 15); } function OnDraw() { //fbo rander CUBE_MAP RenderFBO(); //element rander gl.viewport(0, 0, gl.viewportWidth, gl.viewportHeight); gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); mat4.perspective(pMatrix, 45, gl.viewportWidth / gl.viewportHeight, 0.1, 200.0); mat4.lookAt(vMatrix, eyePos, eyeLookat, vec3.fromValues(0.0, 1.0, 0.0)); RenderCube(); RenderSphere(); } var lastTime = new Date().getTime(); function Update() { var timeNow = new Date().getTime(); if (lastTime != 0) { var elapsed = timeNow - lastTime; //3000控制人眼的旋转速度。8控制人眼的远近 eyePos[0] = Math.cos(elapsed / 3000) * 8; eyePos[2] = Math.sin(elapsed / 2000) * 8; spherePos[0] = Math.cos(elapsed / 4000) * 3; spherePos[2] = Math.cos(elapsed / 4000) * 3; } }
Im Obigen werden die Funktionen Update und Draw alle 15 Millisekunden aufgerufen, wobei Update zum Aktualisieren der Position des Auges und der Kugel und Draw zum Malen verwendet wird.
Klicken Sie hier für den vollständigen BeispielcodeDownload von dieser Website.
Leser, die an weiteren Inhalten im Zusammenhang mit JS-Spezialeffekten interessiert sind, können sich die Spezialthemen dieser Website ansehen: „Zusammenfassung der Verwendung von jQuery-Animationen und Spezialeffekten“ und „Zusammenfassung gängiger Klassiker Spezialeffekte von jQuery"
Ich hoffe, dass dieser Artikel für alle hilfreich ist, die sich mit der JavaScript-Programmierung befassen.