Heim >Web-Frontend >HTML-Tutorial >Codeforces Round #271 (Div. 2) D. Flowers (递推 预处理)_html/css_WEB-ITnose

Codeforces Round #271 (Div. 2) D. Flowers (递推 预处理)_html/css_WEB-ITnose

WBOY
WBOYOriginal
2016-06-24 11:56:451272Durchsuche

We saw the little game Marmot made for Mole's lunch. Now it's Marmot's dinner time and, as we all know, Marmot eats flowers. At every dinner he eats some red and white flowers. Therefore a dinner can be represented as a sequence of several flowers, some of them white and some of them red.

But, for a dinner to be tasty, there is a rule: Marmot wants to eat white flowers only in groups of sizek.

Now Marmot wonders in how many ways he can eat between a and b flowers. As the number of ways could be very large, print it modulo1000000007 (109?+?7).

Input

Input contains several test cases.

The first line contains two integers t andk (1?≤?t,?k?≤?105), wheret represents the number of test cases.

The next t lines contain two integers ai andbi (1?≤?ai?≤?bi?≤?105), describing the i-th test.

Output

Print t lines to the standard output. Thei-th line should contain the number of ways in which Marmot can eat betweenai andbi flowers at dinner modulo1000000007 (109?+?7).

Sample test(s)

Input

3 21 32 34 4

Output

655

Note

  • For K = 2 and length1 Marmot can eat (R).
  • For K = 2 and length2 Marmot can eat (RR) and (WW).
  • For K = 2 and length3 Marmot can eat (RRR), (RWW) and (WWR).
  • For K = 2 and length4 Marmot can eat, for example, (WWWW) or (RWWR), but for example he can't eat (WWWR).

  • 考虑第n个。假如n是小于k的,那么只能都是是R,也就是只有一种情况。假如大于等于k,如果第n个是W,那么从n-k+1到n全部为W,如果第n个是R,那么数量就是前n-1个的数量。

    dp[n] = 1; (0

    dp[n] = dp[n-1] + dp[n-k]; (n >= k)


    #include <stdio.h>#include <string.h>#include <math.h>#include <iostream>#include <queue>#include <algorithm>#include <cmath>#define mem(f) memset(f,0,sizeof(f))#define M 100005#define mod 1000000007#define MAX 0X7FFFFFFF#define maxn 100005#define lson o<<1, l, m#define rson o<<1|1, m+1, rusing namespace std;typedef long long LL;int n = maxn, k, t, a, b, dp[maxn], sum[maxn];int main(){    scanf("%d%d", &t, &k);    for(int i = 0; i < k; i++) dp[i] = 1;    for(int i = k; i < n; i++) dp[i] = (dp[i-1] + dp[i-k])%mod;    for(int i = 1; i < n; i++) sum[i] = (sum[i-1] + dp[i])%mod;    while(t--) {        scanf("%d%d", &a, &b);        printf("%d\n", ((sum[b]-sum[a-1])%mod+mod)%mod );    }    return 0;}


    ??

    Stellungnahme:
    Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn