python以其优美的语法和方便的内置数据结构,赢得了不少程序员的亲睐。
其中有个很有用的数据结构,就是字典(dict),使用非常简单。说到遍历一个dict结构,我想大多数人都会想到 for key in dictobj 的方法,确实这个方法在大多数情况下都是适用的。但是并不是完全安全,请看下面这个例子:
#这里初始化一个dict
>>> d = {'a':1, 'b':0, 'c':1, 'd':0}
#本意是遍历dict,发现元素的值是0的话,就删掉
>>> for k in d:
... if d[k] == 0:
... del(d[k])
...
Traceback (most recent call last):
File "
RuntimeError: dictionary changed size during iteration
#结果抛出异常了,两个0的元素,也只删掉一个。
>>> d
{'a': 1, 'c': 1, 'd': 0}
>>> d = {'a':1, 'b':0, 'c':1, 'd':0}
#d.keys() 是一个下标的数组
>>> d.keys()
['a', 'c', 'b', 'd']
#这样遍历,就没问题了,因为其实其实这里遍历的是d.keys()这个list常量。
>>> for k in d.keys():
... if d[k] == 0:
... del(d[k])
...
>>> d
{'a': 1, 'c': 1}
#结果也是对的
>>>
其实,这个例子是我简化过的,我是在一个多线程的程序里发现这个问题的,所以,我的建议是:遍历dict的时候,养成使用 for k in d.keys() 的习惯。
不过,如果是多线程的话,这样就绝对安全吗?也不见得:当两个线程都取完d.keys()以后,如果两个线程都去删同一个key的话,先删的会成功,后删的那个肯定会报 KeyError ,这个看来只能通过其他方式来保证了。
另一篇:dict 两种遍历方式的性能对比
关于纠结dict遍历中带括号与不带括号的性能问题
for (d,x) in dict.items():
print "key:"+d+",value:"+str(x)
for d,x in dict.items():
print "key:"+d+",value:"+str(x)
带括号和不带括号性能测试结果:
测试结果
测试条数:15
带括号开始时间:2012-06-14 12:13:37.375000
带括号结束时间:2012-06-14 12:13:37.375000
时间间隔:0:00:00
不带括号开始时间:2012-06-14 12:13:37.375000
不带括号结束时间:2012-06-14 12:13:37.375000
时间间隔:0:00:00
测试条数:50
带括号开始时间:2012-06-14 12:13:57.921000
带括号结束时间:2012-06-14 12:13:57.921000
时间间隔:0:00:00
不带括号开始时间:2012-06-14 12:13:57.921000
不带括号结束时间:2012-06-14 12:13:57.937000
时间间隔:0:00:00.016000
测试条数:100
带括号开始时间:2012-06-14 11:53:57.453000
带括号结束时间:2012-06-14 11:53:57.468000
时间间隔:0:00:00.015000
不带括号开始时间:2012-06-14 11:53:57.468000
不带括号结束时间:2012-06-14 11:53:57.531000
时间间隔:0:00:00.063000
测试条数:150
带括号开始时间:2012-06-14 12:00:54.812000
带括号结束时间:2012-06-14 12:00:54.828000
时间间隔:0:00:00.016000
不带括号开始时间:2012-06-14 12:00:54.828000
不带括号结束时间:2012-06-14 12:00:54.921000
时间间隔:0:00:00.093000
测试条数:200
带括号开始时间:2012-06-14 11:59:54.609000
带括号结束时间:2012-06-14 11:59:54.687000
时间间隔:0:00:00.078000
不带括号开始时间:2012-06-14 11:59:54.687000
不带括号结束时间:2012-06-14 11:59:54.734000
时间间隔:0:00:00.047000
测试条数:500
带括号开始时间:2012-06-14 11:54:39.906000
带括号结束时间:2012-06-14 11:54:40.078000
时间间隔:0:00:00.172000
不带括号开始时间:2012-06-14 11:54:40.078000
不带括号结束时间:2012-06-14 11:54:40.125000
时间间隔:0:00:00.047000
测试条数:1000
带括号开始时间:2012-06-14 11:54:49.171000
带括号结束时间:2012-06-14 11:54:49.437000
时间间隔:0:00:00.266000
不带括号开始时间:2012-06-14 11:54:49.437000
不带括号结束时间:2012-06-14 11:54:49.609000
时间间隔:0:00:00.172000
测试条数:2000
带括号开始时间:2012-06-14 11:54:58.921000
带括号结束时间:2012-06-14 11:54:59.328000
时间间隔:0:00:00.407000
不带括号开始时间:2012-06-14 11:54:59.328000
不带括号结束时间:2012-06-14 11:54:59.687000
时间间隔:0:00:00.359000
测试条数:5000
带括号开始时间:2012-06-14 11:55:05.781000
带括号结束时间:2012-06-14 11:55:06.734000
时间间隔:0:00:00.953000
不带括号开始时间:2012-06-14 11:55:06.734000
不带括号结束时间:2012-06-14 11:55:07.609000
时间间隔:0:00:00.875000
测试条数:10000
带括号开始时间:2012-06-14 11:55:15.656000
带括号结束时间:2012-06-14 11:55:17.390000
时间间隔:0:00:01.734000
不带括号开始时间:2012-06-14 11:55:17.390000
不带括号结束时间:2012-06-14 11:55:19.109000
时间间隔:0:00:01.719000
测试条数:20000
带括号开始时间:2012-06-14 12:19:14.921000
带括号结束时间:2012-06-14 12:19:18.593000
时间间隔:0:00:03.672000
不带括号开始时间:2012-06-14 12:19:18.593000
不带括号结束时间:2012-06-14 12:19:22.218000
时间间隔:0:00:03.625000
我们可以看出,dict条数在200一下的时候是带括号的性能比较高一点,但是在200条以上的数据后不带括号的执行时间会少些.
下面是测试代码:
测试Code
#-*- coding: utf-8 -*-
import datetime,codecs
dict = {}
for i in xrange(0,20000):
dict.setdefault("name"+str(i))
dict["name"+str(i)]="name"
s=codecs.open(r'c:\\dict.txt','a', 'utf-8')
def write(des):
s.write(des.decode("utf-8"))
write("测试条数:")
write(str(len(dict))+"\r\n")
write("带括号开始时间:")
a=datetime.datetime.now()
s.write(str(a)+"\r\n")
for (d,x) in dict.items():
print "key:"+d+",value:"+str(x)
write("带括号结束时间:")
b=datetime.datetime.now()
write(str(b)+"\r\n")
write("时间间隔:")
write(str(b-a)+"\r\n")
write("不带括号开始时间:")
c=datetime.datetime.now()
write(str(c)+"\r\n")
for d,x in dict.items():
print "key:"+d+",value:"+str(x)
write("不带括号结束时间:")
d=datetime.datetime.now()
write(str(d)+"\r\n")
write("时间间隔:")
write(str(d-c)+"\r\n")
write("\r\n")
s.close()
中文乱码问题有没有很好的解决办法....?

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Zu den realen Anwendungen von Python gehören Datenanalysen, Webentwicklung, künstliche Intelligenz und Automatisierung. 1) In der Datenanalyse verwendet Python Pandas und Matplotlib, um Daten zu verarbeiten und zu visualisieren. 2) In der Webentwicklung vereinfachen Django und Flask Frameworks die Erstellung von Webanwendungen. 3) Auf dem Gebiet der künstlichen Intelligenz werden Tensorflow und Pytorch verwendet, um Modelle zu bauen und zu trainieren. 4) In Bezug auf die Automatisierung können Python -Skripte für Aufgaben wie das Kopieren von Dateien verwendet werden.

Python wird häufig in den Bereichen Data Science, Web Development und Automation Scripting verwendet. 1) In der Datenwissenschaft vereinfacht Python die Datenverarbeitung und -analyse durch Bibliotheken wie Numpy und Pandas. 2) In der Webentwicklung ermöglichen die Django- und Flask -Frameworks Entwicklern, Anwendungen schnell zu erstellen. 3) In automatisierten Skripten machen Pythons Einfachheit und Standardbibliothek es ideal.

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

Dreamweaver Mac
Visuelle Webentwicklungstools