Heim >Backend-Entwicklung >PHP-Tutorial > SPAM、Bayesian跟中文 4 - 在CakePHP中集成贝叶斯算法

SPAM、Bayesian跟中文 4 - 在CakePHP中集成贝叶斯算法

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOriginal
2016-06-13 13:25:42972Durchsuche

SPAM、Bayesian和中文 4 - 在CakePHP中集成贝叶斯算法

上文提到了贝叶斯算法的几种开源实现,本文说说如何将其中一种名为b8的开源实现集成进CakePHP。

下载b8及安装

  1. b8的站点下载最新版本,将其解压至vendors目录,文件位置如vendors/b8/b8.php;
  2. 用文本编辑器打开vendors/b8/etc/config_b8,修改databaseType为mysql;
  3. 用文本编辑器打开vendors/b8/etc/config_storage,修改tableName为你用来存储关键字的数据表的名字,修改createDB为TRUE,要注意的是,当你第一次运行b8后,它会建立上述数据表,然后你要重新把createDB改为FALSE;
  4. 用文本编辑器打开vendors/b8/lexer/shared_functions.php,将38行的代码(在echoError())注释掉,否则b8会直接把错误信息显示在你的Cake应用中,当然这在调试程序时还是有用的。

为b8写一个wrapper component

为了让你的Cake能够调用到b8,你需要写一个component。在controllers/components/新建一个spam_shield.php,加入如下代码:

class SpamShieldComponent extends Object {

??? /** * b8 instance?*/

??? var $b8;

??? /** * standard rating * * comments with ratings which are higher than this one will be considered as SPAM?*/

??? var $standardRating = 0.7;

??? /** * text to be classified */

??? var $text;

??? /** * rating of the text */

??? var $rating;

??? /** * Constructor * * @date 2009-1-20 */

??? function startup(&$controller) {

??????? //register a CommentModel to get the DBO resource link

??????? $comment = ClassRegistry::init('Comment'); //import b8 and create an instance????

?????? ?App::import('Vendor', 'b8/b8');

?????? ?$this->b8 = new b8($comment->getDBOResourceLink()); //set standard rating???

?????? ?$this->standardRating = Configure::read('LT.bayesRating') ? Configure::read('LT.bayesRating') : $this->standardRating;

??? }

?

??? /** * Set the text to be classified * * @param $text String the text to be classified * @date 2009-1-20 */

??? function set($text) {

??????? $this->text = $text;

??? }

?

??? /** * Get Bayesian rating * * @date 2009-1-20 */

??? function rate() {

?????? ?//get Bayes rating and return return

?????? ?$this->rating = $this->b8->classify($this->text);

??? }

?

??? /** * Validate a message based on the rating, return true if it's NOT a SPAM * * @date 2009-1-20 */

??? function validate() {

??????? return $this->rate() standardRating;

??? }

?

??? /** * Learn a SPAM or a HAM * * @date 2009-1-20 */

??? function learn($mode) {

?????? ?$this->b8->learn($this->text, $mode);

??? }

?

??? /** * Unlearn a SPAM or a HAM * * @date 2009-1-20 */

??? function unlearn($mode) {

?????? ?$this->b8->unlearn($this->text, $mode);

??? }

}

几点说明:

  1. $standardRating是一个临界点。如果贝叶斯概率高于这个值,则此留言被认为是spam,否则是ham。我设置为0.7,你可以根据自己的情况修改;
  2. Configure::read('LT.bayesRating')是从系统运行配置中动态地获取上述临界点的值,这是我的做法,你可能用不到,根据情况稍微修改甚至不修改都行;
  3. Comment指的是评论的model;
  4. 由于b8需要获得数据库句柄以便能够操作数据表,所以在startup()中我写了$this->b8 = new b8($comment->getDBOResourceLink())一句,其中用到的getDBOResourceLink()马上会提及。

为b8传入数据库句柄

在models/comment.php中加入如下代码:

/** * get the resource link of MySQL connection */ public function getDBOResourceLink() { return $this->getDataSource()->connection; }

至此,准备工作全部做完,我们终于可以使用贝叶斯算法来分类留言。

使用b8分类留言

在controllers/comments_controller.php中,首先载入SpamShieldComponent:

var $components = array('SpamShield');

然后在add()方法中,做如下操作:

//set data for Bayesian validation

$this->SpamShield->set($this->data['Comment']['body']); //validate the comment with Bayesian

if(!$this->SpamShield->validate()) { //set the status

??? $this->data['Comment']['status'] = 'spam'; //save

??? $this->Comment->save($this->data); //learn it $this->SpamShield->learn("spam"); //render

??? $this->renderView('unmoderated');

??? return;

}

//it's a normal post

$this->data['Comment']['status'] = 'published'; //save for publish

$this->Comment->save($this->data); //learn it

$this->SpamShield->learn("ham");

如此一来,b8就会在留言到来时自动的分类并学习,你基本上已经与spam绝缘了!

提醒一下:第一次运行后,别忘了把刚才提到的createDB改为FALSE。

http://dingyu.me/blog/spam-bayesian-chinese-4

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn