


Dieses Tutorial bietet einen umfassenden Leitfaden zur Verwendung und Feinabstimmung des Mistral 7B-Sprachmodells für natürliche Sprachverarbeitungsaufgaben. Sie erfahren
Zugriff auf Mistral 7BMistral 7b ist über verschiedene Plattformen zugänglich, darunter das Gesicht, die Scheitelpunkt -AI, die Replikate, der Sagemaker -Jumpstart und die Baseten. Dieses Tutorial konzentriert sich auf die Verwendung von Kaggle's "Models" -Funktion für optimierten Zugriff und beseitigt die Notwendigkeit manueller Downloads.
Dieser Abschnitt zeigt das Laden des Modells aus Kaggle und Durchführung von Inferenz. Es sind wichtige Bibliotheksaktualisierungen von entscheidender Bedeutung, um Fehler zu verhindern:
<code>!pip install -q -U transformers !pip install -q -U accelerate !pip install -q -U bitsandbytes</code>4-Bit-Quantisierung mit NF4-Konfiguration unter Verwendung von BitsandBytes verbessert die Ladegeschwindigkeit und reduziert die Speicherverwendung:
<code>from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline import torch bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, )</code>Hinzufügen des Mistral 7B -Modells zu Ihrem Kaggle -Notizbuch umfasst die folgenden Schritte:
- Klicken Sie im rechten Bereich auf "Modelle hinzufügen".
- Suche nach "Mistral 7b", wählen Sie "7B-V0.1-HF" und fügen Sie es hinzu.
- Beachten Sie den Verzeichnispfad.
: transformers
<code>model_name = "/kaggle/input/mistral/pytorch/7b-v0.1-hf/1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, load_in_4bit=True, quantization_config=bnb_config, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, )</code>Inferenz wird mit der Funktion
vereinfacht: pipeline
<code>pipe = pipeline( "text-generation", model=model, tokenizer = tokenizer, torch_dtype=torch.bfloat16, device_map="auto" )</code>Aufforderung des Modells und Einstellungsparameter:
<code>prompt = "As a data scientist, can you explain the concept of regularization in machine learning?" sequences = pipe( prompt, do_sample=True, max_new_tokens=100, temperature=0.7, top_k=50, top_p=0.95, num_return_sequences=1, ) print(sequences[0]['generated_text'])</code>Mistral 7B Feinabstimmung
Dieser Abschnitt führt Sie durch die Feinabstimmung Mistral 7b im Datensatz
unter Verwendung von Techniken wie PEFT, 4-Bit-Quantisierung und Qlora. Das Tutorial bezieht sich auch auf einen Leitfaden zu Feinabstimmungslama 2 für einen weiteren Kontext. guanaco-llama2-1k
notwendige Bibliotheken sind installiert:
<code>%%capture %pip install -U bitsandbytes %pip install -U transformers %pip install -U peft %pip install -U accelerate %pip install -U trl</code>relevante Module werden importiert:
<code>from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig,HfArgumentParser,TrainingArguments,pipeline, logging from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model import os,torch, wandb from datasets import load_dataset from trl import SFTTrainer</code>API -Schlüssel werden mit Kaggle Secrets sicher verwaltet:
<code>from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() secret_hf = user_secrets.get_secret("HUGGINGFACE_TOKEN") secret_wandb = user_secrets.get_secret("wandb")</code>Umarmende Gesicht und Gewichte und Verzerrungen werden konfiguriert:
<code>!huggingface-cli login --token $secret_hf wandb.login(key = secret_wandb) run = wandb.init( project='Fine tuning mistral 7B', job_type="training", anonymous="allow" )</code>Basismodell, Datensatz und neuer Modellname sind definiert:
<code>base_model = "/kaggle/input/mistral/pytorch/7b-v0.1-hf/1" dataset_name = "mlabonne/guanaco-llama2-1k" new_model = "mistral_7b_guanaco"</code>Datenladen
Der Datensatz ist geladen und ein Beispiel wird angezeigt:
<code>dataset = load_dataset(dataset_name, split="train") dataset["text"][100]</code>
Das Modell ist mit 4-Bit-Genauigkeit geladen:
<code>bnb_config = BitsAndBytesConfig( load_in_4bit= True, bnb_4bit_quant_type= "nf4", bnb_4bit_compute_dtype= torch.bfloat16, bnb_4bit_use_double_quant= False, ) model = AutoModelForCausalLM.from_pretrained( base_model, load_in_4bit=True, quantization_config=bnb_config, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, ) model.config.use_cache = False model.config.pretraining_tp = 1 model.gradient_checkpointing_enable()</code>Laden des Tokenizers
Der Tokenizer ist geladen und konfiguriert:
<code>tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True) tokenizer.padding_side = 'right' tokenizer.pad_token = tokenizer.eos_token tokenizer.add_eos_token = True tokenizer.add_bos_token, tokenizer.add_eos_token</code>Hinzufügen des Adapters
Ein Lora-Adapter wird für eine effiziente Feinabstimmung hinzugefügt:
<code>model = prepare_model_for_kbit_training(model) peft_config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias="none", task_type="CAUSAL_LM", target_modules=["q_proj", "k_proj", "v_proj", "o_proj","gate_proj"] ) model = get_peft_model(model, peft_config)</code>Hyperparameter
Trainingsargumente werden definiert:
<code>training_arguments = TrainingArguments( output_, num_train_epochs=1, per_device_train_batch_size=4, gradient_accumulation_steps=1, optim="paged_adamw_32bit", save_steps=25, logging_steps=25, learning_rate=2e-4, weight_decay=0.001, fp16=False, bf16=False, max_grad_norm=0.3, max_steps=-1, warmup_ratio=0.03, group_by_length=True, lr_scheduler_type="constant", report_to="wandb" )</code>SFT -Training
Der SftTrainer ist konfiguriert und das Training wird eingeleitet:
<code>!pip install -q -U transformers !pip install -q -U accelerate !pip install -q -U bitsandbytes</code>
Speichern und Schieben des Modells
Das fein abgestimmte Modell wird gerettet und auf den umarmenden Gesichtszentrum gedrückt:
<code>from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline import torch bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, )</code>
Modellbewertung
Modellleistung wird unter Verwendung von Gewichten und Verzerrungen bewertet. Inferenzbeispiele werden bereitgestellt.
Zusammenführen des Adapters
Der Adapter wird mit dem Basismodell zusammengeführt, und das resultierende Modell wird zum Umarmungsgesicht gedrückt.
Zugriff auf das fein abgestimmte Modell
Das fusionierte Modell ist vom Umarmungsgesicht geladen und die Schlussfolgerung wird demonstriert.
Schlussfolgerung
Das Tutorial schließt mit einer Zusammenfassung der Funktionen von Mistral 7B und einer Zusammenfassung der Schritte, die mit dem Zugriff auf, Feinabstimmung und Bereitstellung des Modells verbunden sind. Ressourcen und FAQs sind ebenfalls enthalten. Der Schwerpunkt liegt auf der Bereitstellung eines praktischen Leitfadens für Benutzer, die mit diesem leistungsstarken Sprachmodell arbeiten können.
Das obige ist der detaillierte Inhalt vonMistral 7B Tutorial: Eine Schritt-für-Schritt-Anleitung zur Verwendung und der Feinabstimmung Mistral 7B. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Das Olympiccoder-7b von Face umarmt: Ein leistungsstarkes Open-Source-Code-Argumentationsmodell Das Rennen um die Entwicklung von Sprachmodellen mit oberen Code-fokussierten Sprachläufern und das Umarmungsgesicht hat sich dem Wettbewerb mit einem beeindruckenden Anwärter angeschlossen: Olympiccoder-7b, ein Produkt, ein Produkt, ein Produkt

Wie viele von Ihnen haben sich gewünscht, KI zu beantworten, als nur Fragen zu beantworten? Ich weiß, dass ich es habe, und in letzter Zeit bin ich erstaunt, wie es sich verändert. Bei KI -Chatbots geht es nicht mehr nur darum, zu chatten, sondern auch darum, zu erstellen, zu recherchieren

Da Smart AI in alle Ebenen der Plattformen und Anwendungen und Anwendungen von Unternehmen integriert wird (wir müssen betonen, dass es sowohl leistungsstarke Kernwerkzeuge als auch einige weniger zuverlässige Simulationstools gibt), benötigen wir eine neue Reihe von Infrastrukturfunktionen, um diese Agenten zu verwalten. Camunda, ein in Berlin mit Sitz in Berlin ansässiger Prozessorchestrierungsunternehmen, ist der Ansicht, dass es intelligente KI dabei helfen kann, seine gebührende Rolle zu spielen und genaue Geschäftsziele und -regeln am neuen digitalen Arbeitsplatz auszurichten. Das Unternehmen bietet derzeit intelligente Orchestrierungsfunktionen an, mit denen Unternehmen das Modellieren, die Bereitstellung und Verwaltung von AI -Agenten helfen sollen. Was bedeutet das aus praktischer Sicht der praktischen Software -Engineering? Die Integration von Sicherheit und nicht deterministischen Prozessen Das Unternehmen sagte, der Schlüssel sei, Benutzern (in der Regel Datenwissenschaftler, Software) zuzulassen.

Als ich die Google Cloud Next '25 besuchte, war ich gespannt, wie Google seine KI -Angebote unterscheiden würde. Jüngste Ankündigungen bezüglich Agentspace (hier erörtert) und die Customer Experience Suite (hier diskutiert) waren vielversprechend und betonten den Geschäftswert für den Geschäftswert

Auswählen des optimalen mehrsprachigen Einbettungsmodells für Ihr RAG -System (Abruf Augmented Generation) In der heutigen miteinander verbundenen Welt ist es von größter Bedeutung, effektive mehrsprachige KI -Systeme aufzubauen. Robuste mehrsprachige Einbettungsmodelle sind für RE von entscheidender Bedeutung

Teslas Austin Robotaxi Start: Ein genauerer Blick auf die Behauptungen von Musk Elon Musk kündigte kürzlich den bevorstehenden Robotaxi-Start von Tesla in Austin, Texas, an und stellte zunächst eine kleine Flotte von 10 bis 20 Fahrzeugen aus Sicherheitsgründen mit Plänen für eine schnelle Erweiterung ein. H

Die Art und Weise, wie künstliche Intelligenz angewendet wird, kann unerwartet sein. Zunächst könnten viele von uns glauben, dass es hauptsächlich für kreative und technische Aufgaben wie das Schreiben von Code und das Erstellen von Inhalten verwendet wurde. Eine kürzlich von Harvard Business Review gemeldete Umfrage zeigt jedoch, dass dies nicht der Fall ist. Die meisten Benutzer suchen künstliche Intelligenz nicht nur für die Arbeit, sondern auch für Unterstützung, Organisation und sogar Freundschaft! In dem Bericht heißt es, dass die erste von AI -Anwendungsfällen Behandlung und Kameradschaft ist. Dies zeigt, dass die Verfügbarkeit rund um die Uhr und die Fähigkeit, anonyme, ehrliche Ratschläge und Feedback zu liefern, von großem Wert sind. Andererseits sind Marketingaufgaben (z. B. das Schreiben eines Blogs, das Erstellen von Social -Media -Beiträgen oder die Werbekopie) auf der beliebten Nutzungsliste viel niedriger. Warum ist das? Lassen Sie uns die Ergebnisse der Forschung sehen und wie sie weiterhin ist

Der Aufstieg der AI -Agenten verändert die Geschäftslandschaft. Im Vergleich zur Cloud -Revolution wird vorausgesagt, dass die Auswirkungen von AI -Agenten exponentiell größer sind und vielversprechend sind, die Wissensarbeit zu revolutionieren. Die Fähigkeit, menschliche Entscheidungsmaki zu simulieren


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.