Heim >Technologie-Peripheriegeräte >KI >Finetuning Qwen2 7B VLM mit Unloth für die Radiologie -VQA
Vision-Sprachmodelle (VLMs): Feinabstimmung QWEN2 für die Gesundheitsbildanalyse
Vision-Sprach-Modelle (VLMs), eine Teilmenge multimodaler KI, exzelzieren Sie die Verarbeitung visueller und Textdaten, um Textausgänge zu generieren. Im Gegensatz zu großsprachigen Modellen (LLMs) nutzen VLMs Null-Shot-Lernen und starke Generalisierungsfunktionen, die Aufgaben ohne vorheriges spezifisches Training abwickeln. Die Anwendungen reichen von der Objektidentifikation in Bildern bis zu komplexem Dokumentverständnis. Dieser Artikel beschreibt die Feinabstimmung von Alibabas QWEN2 7B VLM in einem benutzerdefinierten Datensatz für die Radiologie des Gesundheitswesens.
Dieser Blog zeigt die Feinabstimmung des QWEN2 7B Visual Sprachmodells von Alibaba unter Verwendung eines benutzerdefinierten Gesundheitsdatensatzes mit Radiologie-Bildern und Fragen-Antwortenpaaren.
Lernziele:
Dieser Artikel ist Teil des Data Science -Blogathons.
Inhaltsverzeichnis:
Einführung in Vision Language Modelle:
vlms sind multimodale Modelle, die sowohl Bilder als auch Text verarbeiten. Diese generativen Modelle nehmen Bild und Text als Eingabe auf und erzeugen Textausgänge. Große VLMs zeigen starke Null-Shot-Funktionen, eine effektive Generalisierung und Kompatibilität mit verschiedenen Bildtypen. Zu den Anwendungen gehören bildbasierter Chat, Anleitungsbetrieben, Bilderkennung, VQA, Dokumentverständnis und Bildunterschrift.
Viele VLMs erfassen räumliche Bildeigenschaften, die Begrenzungsboxen oder Segmentierungsmasken für die Erkennung und Lokalisierung von Objekten erzeugen. Bestehende große VLMs variieren in Trainingsdaten, Bildcodierungsmethoden und Gesamtfunktionen.
visuelle Frage Beantwortung (VQA):
VQA ist eine KI -Aufgabe, die sich darauf konzentriert, genaue Antworten auf Fragen zu Bildern zu generieren. Ein VQA -Modell muss sowohl den Bildinhalt als auch die Semantik der Frage verstehen und die Bilderkennung und die Verarbeitung natürlicher Sprache kombinieren. Angesichts eines Bildes eines Hundes auf einem Sofa und der Frage "Wo ist der Hund?"
Feinabstimmungs-VLMs für domänenspezifische Anwendungen:
Während LLMs nach riesigen Textdaten geschult werden, wodurch sie für viele Aufgaben ohne Feinabstimmung geeignet sind. Internetbilder fehlt die Domänenspezifität, die häufig für Anwendungen im Gesundheitswesen, Finanzierung oder Herstellung benötigt wird. Feinabstimmungs-VLMs auf benutzerdefinierten Datensätzen sind für eine optimale Leistung in diesen speziellen Bereichen von entscheidender Bedeutung.
Schlüsselszenarien für die Feinabstimmung:
Unloth: Ein feinstimmendes Framework:
Unloth ist ein Framework für effizientes großes Sprach- und Vision-Sprachmodell-Feinabstimmen. Zu den wichtigsten Funktionen gehören:
Code-Implementierung (4-Bit quantisierte Qwen2 7b VLM):
In den folgenden Abschnitten werden die Code -Implementierung beschrieben, einschließlich Abhängigkeitsinporte, Datensatzlade-, Modellkonfiguration sowie Schulungen und Bewertung mit Bertscore. Der vollständige Code ist auf [Github Repo] verfügbar (GitHub Link hier einfügen).
(Code-Ausschnitte und Erklärungen für die Schritte 1-10 würden hier enthalten, die die Struktur und den Inhalt der ursprünglichen Eingabe widerspiegeln, jedoch mit leichter Rephrasing und potenziell prägnanteren Erklärungen, soweit möglich. Schlussfolgerung:
Feinabstimmungs-VLMs wie QWEN2 verbessert die Leistung bei domänenspezifischen Aufgaben signifikant. Die hohen Bertscore -Metriken zeigen die Fähigkeit des Modells, genaue und kontextbezogene Antworten zu generieren. Diese Anpassungsfähigkeit ist für verschiedene Branchen von entscheidender Bedeutung, die multimodale Daten analysieren müssen.
Key Takeaways:
häufig gestellte Fragen:
(Der FAQS -Abschnitt würde hier enthalten, die die ursprüngliche Eingabe spiegeln.)
(Der letzte Satz über Analytics Vidhya wäre auch einbezogen.)
Das obige ist der detaillierte Inhalt vonFinetuning Qwen2 7B VLM mit Unloth für die Radiologie -VQA. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!