Heim >Technologie-Peripheriegeräte >KI >So erstellen Sie einen Chatbot mithilfe der OpenAI -API & Pinecone
llm Chatbots: revolutionieren Konversations -KI mit Abruf Augmented Generation (RAG)
Seit dem Start von Chatgpt November 2022 sind Chatbots mit großer Sprachmodell (LLM) allgegenwärtig geworden und transformiert verschiedene Anwendungen. Während das Konzept der Chatbots nicht neu ist - viele ältere Chatbots waren übermäßig komplex und frustrierend -, haben die Plms das Feld wiederbelebt. Dieser Blog untersucht die Leistung von LLMs, die RAG -Technik (Abruf Augmented Generation) und wie Sie Ihren eigenen Chatbot mit OpenAIs GPT -API und Tinecone erstellen.
Diese Anleitung deckt:
Erforschen Sie für einen tieferen Tauchgang unsere Kurse in Vektordatenbanken für Einbettungen mit PineCone und dem Code-Along auf Chatbots mit OpenAI-API und Pinecone
.
große Sprachmodelle (LLMs)
Bildquelle
llms wie GPT-4 sind ausgefeilte Algorithmen für maschinelles Lernen, die tiefes Lernen (insbesondere Transformer-Architektur) verwenden, um menschliche Sprache zu verstehen und zu generieren. Auf massiven Datensätze (Billionen von Wörtern aus verschiedenen Online -Quellen) erledigen sie komplexe Sprachaufgaben.
llms excel bei der Textgenerierung in verschiedenen Stilen und Formaten, vom kreativen Schreiben bis zur technischen Dokumentation. Zu ihren Fähigkeiten zählen Summarisierung, Konversations -KI und Sprachübersetzung, die häufig differenzierte Sprachmerkmale erfassen.
LLMs haben jedoch Einschränkungen. "Halluzinationen" - generierende plausible, aber falsche Informationen - und Verzerrungen aus Trainingsdaten sind erhebliche Herausforderungen. Während LLMs einen großen KI -Fortschritt darstellen, ist das sorgfältige Management von entscheidender Bedeutung, um Risiken zu mildern.
Abruf Augmented Generation (RAG)
Bildquelle
llms 'Einschränkungen (veraltete, generische oder falsche Informationen aufgrund von Datenbeschränkungen oder "Halluzinationen") werden von RAG behandelt. RAG verbessert die Genauigkeit und Vertrauenswürdigkeit, indem sie LLMs anweisen, relevante Informationen aus bestimmten Quellen abzurufen. Dies gibt Entwicklern mehr Kontrolle über LLM -Antworten.
(Ein detailliertes Lag -Tutorial ist separat erhältlich.)
Vektordatenbanken
Bildquelle
Vektordatenbanken verwalten hochdimensionale Vektoren (mathematische Datendarstellungen). Sie zeichnen sich bei Ähnlichkeitssuche auf der Grundlage der Vektorentfernung aus und ermöglichen eine semantische Abfrage. Zu den Anwendungen gehören ähnliche Bilder, Dokumente oder Produkte. PineCone ist ein beliebtes, effizientes und benutzerfreundliches Beispiel. Die fortschrittlichen Indexierungstechniken sind ideal für RAG -Anwendungen.
openai api
Die API von OpenAI bietet Zugriff auf Modelle wie GPT, Dall-E und Whisper. Über HTTP -Anforderungen (oder mit der openai
-Bibliothek von Python vereinfacht) zugänglich und ist leicht in verschiedene Programmiersprachen integriert.
Python Beispiel:
import os os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY" from openai import OpenAI client = OpenAI() completion = client.chat.completions.create( model="gpt-4", messages=[ {"role": "system", "content": "You are expert in Machine Learning."}, {"role": "user", "content": "Explain how does random forest works?."} ] ) print(completion.choices[0].message)
Langchain (Framework -Übersicht)
Langchain vereinfacht die LLM -Anwendungsentwicklung. Obwohl es mächtig ist, steht es immer noch unter aktiver Entwicklung, sodass API -Änderungen möglich sind.
End-to-End-Python-Beispiel: Erstellen eines LLM-Chatbots
Dieser Abschnitt erstellt einen Chatbot mit OpenAI GPT-4 und Tinecone. (Hinweis: Ein Großteil dieses Code ist aus dem offiziellen Tinecone Langchain -Handbuch angepasst.)
langchain
, langchain-community
, openai
, tiktoken
, pinecone-client
und pinecone-datasets
zu installieren. wikipedia-simple-text-embedding-ada-002-100K
von pinecone-datasets
). (Eine Untergruppe abtastet wird für eine schnellere Verarbeitung empfohlen.) langchain-retrieval-augmentation-fast
in diesem Beispiel). ChatOpenAI
und RetrievalQA
(oder RetrievalQAWithSourcesChain
für die Quellzuordnung), um das LLM in den Vektorspeicher zu integrieren. Schlussfolgerung
Dieser Blog demonstrierte die Kraft von Lappen für den Aufbau zuverlässiger und relevanter LLM-Chatbots. Die Kombination von LLMs, Vector -Datenbanken (wie Pinecone) und Frameworks wie Langchain ermöglicht Entwickler, anspruchsvolle Konversations -KI -Anwendungen zu erstellen. Unsere Kurse bieten weitere Lernmöglichkeiten in diesen Bereichen.
Das obige ist der detaillierte Inhalt vonSo erstellen Sie einen Chatbot mithilfe der OpenAI -API & Pinecone. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!