


Pandas vs. PySpark: Ein Leitfaden eines Java -Entwicklers zur Datenverarbeitung
Pandas vs. PySpark: Ein Leitfaden für Java -Entwickler zur Datenverarbeitung
Dieser Artikel zielt darauf ab, Java -Entwickler beim Verständnis und Auswahl zwischen Pandas und PYSPark für Datenverarbeitungsaufgaben zu steuern. Wir werden ihre Unterschiede, Lernkurven und Leistungsauswirkungen untersuchen. Pandas, eine Python -Bibliothek, arbeitet mit Daten im Speicher. Es verwendet DataFrames, die den Tabellen in SQL -Datenbanken ähnlich sind und leistungsstarke Funktionen für die Datenreinigung, Transformation und Analyse bieten. Die Syntax ist prägnant und intuitiv und ähnelt häufig SQL oder R. Operationen werden im gesamten Datenrahmen im Speicher ausgeführt, wodurch es für kleinere Datensätze effizient ist. Es werden auch Datenrahmen verwendet, diese werden jedoch auf eine Gruppe von Maschinen verteilt. Auf diese Weise können PYSPARK Datensätze verarbeiten, die weitaus größer sind als Pandas. Während die DataFrame -API von PYSPARK einige Ähnlichkeiten mit Pandas aufweist, beinhaltet seine Syntax häufig eine explizitere Spezifikation verteilter Vorgänge, einschließlich Datenverzögerung und Mischung. Dies ist erforderlich, um die Verarbeitung über mehrere Maschinen hinweg zu koordinieren. Beispielsweise übersetzt sich eine einfache Pandas
-Operation in eine komplexere Reihe von Spark -Transformationen wie, gefolgt von
im pyspark. Darüber hinaus bietet PYSPark Funktionen, die auf die verteilte Verarbeitung zugeschnitten sind, wie z. B. Verfassungsverträglichkeit und Skalierung über einen Cluster. Das Verständnis von OP-Prinzipien für objektorientierte Programmierungen (OOP) ist für beide entscheidend. Die starke Betonung von Java auf Datenstrukturen führt gut zum Verständnis von Pandas -Datenrahmen und dem DataFrame -Schema von PYSPARK. Erfahrung mit Datenmanipulation in Java (z. B. Verwendung von Sammlungen oder Streams) bezieht sich direkt auf die Transformationen, die in Pandas und PySpark angewendet werden. Die Python -Syntax ist einfacher zu verstehen als einige andere Sprachen, und die Kernkonzepte der Datenmanipulation sind weitgehend konsistent. Die Konzentration auf das Mastering von Numpy (eine grundlegende Bibliothek für Pandas) wird besonders vorteilhaft sein.Für pySpark ist die anfängliche Lernkurve aufgrund des verteilten Rechenaspekts steiler. Die Erfahrungen von Java -Entwicklern mit Multithreading und Parallelität werden sich jedoch als vorteilhaft erweisen, um zu verstehen, wie PYSPARK Aufgaben in einem Cluster verwaltet. Sich mit Sparks Konzepten wie RDDs (widerstandsfähige verteilte Datensätze) und Transformationen/Aktionen vertraut zu machen, ist der Schlüssel. Das Verständnis der Einschränkungen und Vorteile der verteilten Berechnung ist wesentlich. Pandas zeichnet sich mit kleineren Datensätzen aus, die bequem in den verfügbaren Speicher einer einzelnen Maschine passen. Seine Memory-Operationen sind im Allgemeinen schneller als der Overhead der verteilten Verarbeitung in PYSPark für solche Szenarien. Für Datenmanipulationsaufgaben, die komplexe Berechnungen oder iterative Verarbeitung für relativ kleine Datensätze beinhalten, bietet Pandas eine einfachere und häufig schnellere Lösung. Die verteilte Natur ermöglicht es ihm, Terabyte oder sogar Petabyte von Daten zu handhaben. Während der Overhead der Verteilung von Daten und Koordinierungsaufgaben eine Latenz einführt, wird dies durch die Fähigkeit, Datensätze zu verarbeiten, die nicht mit Pandas verarbeitet werden können. Für groß angelegte Datenverarbeitungsaufgaben wie ETL (Extrakt, Transformation, Last), maschinelles Lernen für Big Data und Echtzeitanalysen zum Streaming-Daten ist PYSPARK der klare Gewinner in Bezug auf Skalierbarkeit und Leistung. Für kleinere Datensätze kann der Overhead von PYSPARK jedoch alle Leistungsgewinne im Vergleich zu Pandas zunichte machen. Daher ist eine sorgfältige Berücksichtigung der Datengröße und der Aufgabenkomplexität von entscheidender Bedeutung bei der Auswahl zwischen den beiden.
Das obige ist der detaillierte Inhalt vonPandas vs. PySpark: Ein Leitfaden eines Java -Entwicklers zur Datenverarbeitung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Es gibt viele Methoden, um zwei Listen in Python zu verbinden: 1. Verwenden Sie Operatoren, die in großen Listen einfach, aber ineffizient sind; 2. Verwenden Sie die Erweiterungsmethode, die effizient ist, die ursprüngliche Liste jedoch ändert. 3.. Verwenden Sie den operator =, der sowohl effizient als auch lesbar ist; 4. Verwenden Sie die Funktion iterertools.chain, die Speichereffizient ist, aber zusätzlichen Import erfordert. 5. Verwenden Sie List Parsing, die elegant ist, aber zu komplex sein kann. Die Auswahlmethode sollte auf dem Codekontext und den Anforderungen basieren.

Es gibt viele Möglichkeiten, Python -Listen zusammenzuführen: 1. Verwenden von Operatoren, die einfach, aber nicht für große Listen effizient sind; 2. Verwenden Sie die Erweiterungsmethode, die effizient ist, die ursprüngliche Liste jedoch ändert. 3. Verwenden Sie iTertools.chain, das für große Datensätze geeignet ist. 4. Verwenden Sie * Operator, fusionieren Sie kleine bis mittelgroße Listen in einer Codezeile. 5. Verwenden Sie Numpy.concatenate, das für große Datensätze und Szenarien mit hohen Leistungsanforderungen geeignet ist. 6. Verwenden Sie die Append -Methode, die für kleine Listen geeignet ist, aber ineffizient ist. Bei der Auswahl einer Methode müssen Sie die Listengröße und die Anwendungsszenarien berücksichtigen.

CompiledLanguageOfferSpeedandSecurity, während interpretedLanguagesProvideaseofuseAnDportabilität.1) kompiledlanguageslikec areFasterandSecurebuthavelongerDevelopmentCyclesandplatformDependency.2) InterpretedLanguages -pythonareaToReAndoreAndorePortab

In Python wird eine für die Schleife verwendet, um iterable Objekte zu durchqueren, und eine WHHE -Schleife wird verwendet, um Operationen wiederholt durchzuführen, wenn die Bedingung erfüllt ist. 1) Beispiel für Schleifen: Überqueren Sie die Liste und drucken Sie die Elemente. 2) Während des Schleifens Beispiel: Erraten Sie das Zahlenspiel, bis Sie es richtig erraten. Mastering -Zyklusprinzipien und Optimierungstechniken können die Code -Effizienz und -zuverlässigkeit verbessern.

Um eine Liste in eine Zeichenfolge zu verkettet, ist die Verwendung der join () -Methode in Python die beste Wahl. 1) Verwenden Sie die monjoy () -Methode, um die Listelemente in eine Zeichenfolge wie "" .Join (my_list) zu verkettet. 2) Für eine Liste, die Zahlen enthält, konvertieren Sie die Karte (STR, Zahlen) in eine Zeichenfolge, bevor Sie verkettet werden. 3) Sie können Generatorausdrücke für komplexe Formatierung verwenden, wie z. 4) Verwenden Sie bei der Verarbeitung von Mischdatentypen MAP (STR, MIXED_LIST), um sicherzustellen, dass alle Elemente in Zeichenfolgen konvertiert werden können. 5) Verwenden Sie für große Listen '' .Join (large_li

Pythonusesahybridapproach, kombinierte CompilationTobyteCodeAnDinterpretation.1) codiscompiledtoplatform-unintenpendentBytecode.2) BytecodeIsinterpretedBythepythonvirtualMachine, EnhancingEfficiency und Portablabilität.

Die Keedifferzences -zwischen Pythons "für" und "während" Loopsare: 1) "für" LoopsareideAlForiteratingOvercesorknownowniterations, während 2) "LoopsarebetterForContiningUtilAconditionismethoutnredefineditInations.un

In Python können Sie Listen anschließen und doppelte Elemente mit einer Vielzahl von Methoden verwalten: 1) Verwenden von Operatoren oder erweitert (), um alle doppelten Elemente beizubehalten; 2) Konvertieren in Sets und kehren Sie dann zu Listen zurück, um alle doppelten Elemente zu entfernen. Die ursprüngliche Bestellung geht jedoch verloren. 3) Verwenden Sie Schleifen oder listen Sie Verständnisse auf, um Sätze zu kombinieren, um doppelte Elemente zu entfernen und die ursprüngliche Reihenfolge zu verwalten.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

Dreamweaver Mac
Visuelle Webentwicklungstools

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.
