Erstellen Sie Ihren ersten Datenrahmen in PYSpark
Erstellen eines Datenrahmens in PYSPARK, der Kerndatenstruktur für Spark, ist der grundlegende Schritt für jede Datenverarbeitungsaufgabe. Abhängig von Ihrer Datenquelle gibt es verschiedene Möglichkeiten, dies zu erreichen. Der einfachste und häufigste Ansatz ist die Verwendung der spark.read.csv()
-Methode, die wir später im Detail untersuchen werden. Bevor wir jedoch in Einzelheiten eintauchen, richten wir unsere Funkenumgebung ein. Sie müssen pyspark installieren lassen. Wenn nicht, können Sie es mit pip install pyspark
installieren. Anschließend müssen Sie eine SparkSession initialisieren, die der Einstiegspunkt für die Spark -Funktionalität ist. Dies erfolgt normalerweise wie folgt:
from pyspark.sql import SparkSession spark = SparkSession.builder.appName("DataFrameCreation").getOrCreate()
Dies erstellt ein SparkSession -Objekt mit dem Namen spark
. Wir werden dieses Objekt während unserer Beispiele verwenden. Denken Sie daran, die Sitzung zu stoppen, wenn sie spark.stop()
beendet ist. Jetzt sind wir bereit, unseren ersten Datenrahmen zu erstellen. Die
in Ihrem Arbeitsverzeichnis mit der folgenden Struktur:
spark.read.csv()
Hier ist, wie Sie einen Datenrahmen aus dieser CSV -Datei erstellen können: data.csv
Name,Age,City Alice,25,New York Bob,30,London Charlie,28,Paris
zeigt an, dass die ersten Zeile die Zeile enthält, und
(🎜> (🎜> Wenn diese Optionen nicht angegeben sind, geht Spark davon aus, dass die erste Zeile Daten ist und allen Spalten einen Standard -Datentyp (normalerweise Zeichenfolge) zuweist. Sie können das Schema explizit mithilfe einesfrom pyspark.sql import SparkSession spark = SparkSession.builder.appName("DataFrameCreation").getOrCreate() df = spark.read.csv("data.csv", header=True, inferSchema=True) df.show() spark.stop()-Objekts für mehr Kontrolle definieren, was für komplexe oder große Datensätze besonders vorteilhaft ist.
- Aus einer Liste von Listen oder Tupeln: Sie können direkt einen Datenrahmen aus Python -Listen oder Tupeln erstellen. Jede innere Liste/Tupel repräsentiert eine Zeile, und die erste innere Liste/Tuple definiert die Spaltennamen. DataFrame.
from pyspark.sql import SparkSession spark = SparkSession.builder.appName("DataFrameCreation").getOrCreate()
- Aus einer JSON -Datei: Ähnlich wie bei CSV können Sie Daten aus einer JSON -Datei mit lesen. Dies ist besonders nützlich für semi-strukturierte Daten. Das Lesen aus einer Parkettdatei ist oft erheblich schneller als CSV. Verwenden Sie
Name,Age,City Alice,25,New York Bob,30,London Charlie,28,Parisbietet Methoden zum Zugriff auf diese Quellen. Das Schema explizit zu definieren ist oft sicherer, insbesondere für große Datensätze mit verschiedenen Datentypen. Erwägen Sie, Ihre Daten zu partitionieren oder andere Techniken wie
- zu verwenden, um die Anzahl der gelesenen Datensätze pro Datei zu begrenzen. Die Datenreinigung und -vorverarbeitung sind entscheidend, bevor ein Datenframe erstellt wird, um dies zu beheben. Überwachen Sie die Speicherverwendung genau, insbesondere bei der Erstellung von Datenframe, um außerfeilige Fehler zu verhindern. Die Auswahl der geeigneten Methode zur Erstellung von Datenframe basierend auf Ihrer Datenquelle und -größe ist der Schlüssel zur Optimierung der Leistung.
Das obige ist der detaillierte Inhalt vonErstellen Sie Ihren ersten Datenrahmen in PySpark. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und C haben signifikante Unterschiede in der Speicherverwaltung und -kontrolle. 1. Python verwendet die automatische Speicherverwaltung, basierend auf der Referenzzählung und der Müllsammlung, um die Arbeit von Programmierern zu vereinfachen. 2.C erfordert eine manuelle Speicherverwaltung und liefert mehr Kontrolle, aber die Komplexität und das Fehlerrisiko. Welche Sprache zu wählen sollte, sollte auf Projektanforderungen und Teamtechnologie -Stack basieren.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Ob die Auswahl von Python oder C von den Projektanforderungen abhängt: 1) Python eignet sich aufgrund seiner prägnanten Syntax und reichhaltigen Bibliotheken für schnelle Entwicklung, Datenwissenschaft und Skripten; 2) C ist für Szenarien geeignet, die aufgrund seiner Zusammenstellung und des manuellen Speichermanagements eine hohe Leistung und die zugrunde liegende Kontrolle erfordern, wie z. B. Systemprogrammierung und Spielentwicklung.

Python wird in Datenwissenschaft und maschinellem Lernen häufig verwendet, wobei hauptsächlich auf seine Einfachheit und ein leistungsstarkes Bibliotheksökosystem beruhen. 1) Pandas wird zur Datenverarbeitung und -analyse verwendet, 2) Numpy liefert effiziente numerische Berechnungen, und 3) Scikit-Learn wird für die Konstruktion und Optimierung des maschinellen Lernens verwendet. Diese Bibliotheken machen Python zu einem idealen Werkzeug für Datenwissenschaft und maschinelles Lernen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

Dreamweaver CS6
Visuelle Webentwicklungstools

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung