Dieses Tutorial untersucht DeepChecks für Datenvalidierung und maschinelles Lernmodelltest und nutzt Github -Aktionen für automatisierte Tests und Artefakterstellung. Wir werden maschinelles Lernentestsprinzipien, DeepChecks -Funktionalität und einen vollständigen automatisierten Workflow behandeln.
Bild vom Autor
Verständnis für maschinelles Lernen
Effektives maschinelles Lernen erfordert strenge Tests, die über einfache Genauigkeitsmetriken hinausgehen. Wir müssen Fairness, Robustheit und ethische Überlegungen beurteilen, einschließlich der Erkennung von Voreingenommenheit, falsch positiven Aspekten/Negativen, Leistungsmetriken, Durchsatz und Ausrichtung auf die AI -Ethik. Dies beinhaltet Techniken wie Datenvalidierung, Kreuzvalidation, F1-Score-Berechnung, Verwirrungsmatrixanalyse und Drifterkennung (Daten und Vorhersage). Die Datenaufteilung (Zug/Test/Validierung) ist für eine zuverlässige Modellbewertung von entscheidender Bedeutung. Die Automatisierung dieses Vorgangs ist der Schlüssel zum Erstellen von zuverlässigen KI -Systemen.
Für Anfänger bietet die Grundlagen für maschinelles Lernen mit Python Skill Track eine solide Grundlage.
DeepChecks, eine Open-Source-Python-Bibliothek, vereinfacht umfassende Tests für maschinelles Lernen. Es bietet integrierte Überprüfungen für Modellleistung, Datenintegrität und -verteilung und unterstützt die kontinuierliche Validierung für eine zuverlässige Modellbereitstellung.
Erste Schritte mit DeepChecks
DeepChecks mit PIP installieren:
pip install deepchecks --upgrade -q
Datenlast und Vorbereitung (Darlehensdatensatz)
Wir werden den Kreditdatensatz aus DataCamp verwenden.
import pandas as pd loan_data = pd.read_csv("loan_data.csv") loan_data.head()
Erstellen Sie einen DeepChecks -Datensatz:
from sklearn.model_selection import train_test_split from deepchecks.tabular import Dataset label_col = 'not.fully.paid' deep_loan_data = Dataset(loan_data, label=label_col, cat_features=["purpose"])
Datenintegritätstest
DeepChecks 'Datenintegritätssuite führt automatisierte Überprüfungen durch.
from deepchecks.tabular.suites import data_integrity integ_suite = data_integrity() suite_result = integ_suite.run(deep_loan_data) suite_result.show_in_iframe() # Use show_in_iframe for DataLab compatibility
Dies erzeugt eine Berichtsabdeckung: Korrelation für Merkmalsmarke, Korrelation mit Merkmalsfunktionen, Einzelwertüberprüfungen, spezielle Zeichenkennung, Nullwertanalyse, Konsistenz des Datentyps, String-Fehlpaarungen, doppelte Erkennung, Stringlängenvalidierung, widersprüchliche Bezeichnungen und Ausflüssigkeitserkennung.
Speichern Sie den Bericht:
suite_result.save_as_html()
individuelle Testausführung
Führen Sie für Effizienz einzelne Tests aus:
from deepchecks.tabular.checks import IsSingleValue, DataDuplicates result = IsSingleValue().run(deep_loan_data) print(result.value) # Unique value counts per column result = DataDuplicates().run(deep_loan_data) print(result.value) # Duplicate sample count
Modellbewertung mit DeepCecks
Wir schulen ein Ensemble -Modell (logistische Regression, zufällige Wald, Gaußsche naive Bayes) und bewerten es mit DeepChecks.
pip install deepchecks --upgrade -q
Der Modellbewertungsbericht umfasst: ROC-Kurven, schwache Segmentleistung, unbenutzte Merkmalserkennung, Zugtestvergleich, Vorhersagedriftanalyse, einfache Modellvergleiche, Modellinferenzzeit, Verwirrungsmatrizen und mehr.
JSON Ausgabe:
import pandas as pd loan_data = pd.read_csv("loan_data.csv") loan_data.head()
Individuelle Testbeispiel (Label Drift):
from sklearn.model_selection import train_test_split from deepchecks.tabular import Dataset label_col = 'not.fully.paid' deep_loan_data = Dataset(loan_data, label=label_col, cat_features=["purpose"])
automatisieren mit Github -Aktionen
In diesem Abschnitt werden ein Workflow für GitHub -Aktionen zur Automatisierung der Datenvalidierung und des Modelltests angezeigt. Der Prozess beinhaltet das Erstellen eines Repositorys, das Hinzufügen von Daten- und Python -Skripten (data_validation.py
, train_validation.py
) und das Konfigurieren eines Workflows (main.yml
) für GitHub -Aktionen, um diese Skripte auszuführen und die Ergebnisse als Artefakte zu speichern. Detaillierte Schritte und Codeausschnitte finden Sie in der ursprünglichen Eingabe. Ein vollständiges Beispiel finden Sie im Repository kingabzpro/Automating-Machine-Learning-Testing
Repository. Der Workflow verwendet die Aktionen actions/checkout
, actions/setup-python
und actions/upload-artifact
.
Schlussfolgerung
Das automatische Automatisieren von maschinellem Lernen mit DeepChecks und GitHub -Aktionen verbessert die Effizienz und Zuverlässigkeit erheblich. Die frühzeitige Erkennung von Problemen verbessert die Modellgenauigkeit und Fairness. Dieses Tutorial bietet einen praktischen Leitfaden zur Implementierung dieses Workflows, mit dem Entwickler robustere und vertrauenswürdigere KI -Systeme aufbauen können. Betrachten Sie den Wissenschaftler für maschinelles Lernen mit Python Career Track für die Weiterentwicklung in diesem Bereich.
Das obige ist der detaillierte Inhalt vonDeepChecks Tutorial: Automatisierung des maschinellen Lerntests. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Laut einem neuen Bericht der Apollo Research stellt die nicht kontrollierte interne Bereitstellung fortschrittlicher KI -Systeme erhebliche Risiken dar. Dieser mangelnde Aufsicht, der bei großen KI -Unternehmen weit verbreitet ist

Traditionelle Lügendetektoren sind veraltet. Wenn man sich auf den vom Armband verbundenen Zeiger stützt, ist ein Lügendetektor, der die lebenswichtigen Anzeichen und physikalischen Reaktionen des Probanden ausdruckt, bei der Identifizierung von Lügen nicht genau. Aus diesem Grund werden die Erkennungsergebnisse normalerweise nicht vom Gericht verabschiedet, obwohl es dazu geführt hat, dass viele unschuldige Menschen inhaftiert wurden. Im Gegensatz dazu ist künstliche Intelligenz eine leistungsstarke Datenmotor, und ihr Arbeitsprinzip besteht darin, alle Aspekte zu beobachten. Dies bedeutet, dass Wissenschaftler künstliche Intelligenz auf Anwendungen anwenden können, die auf verschiedene Weise Wahrheit suchen. Ein Ansatz besteht darin, die Vitalzeichenreaktionen der Person zu analysieren, die wie ein Lügendetektor befragt wird, jedoch mit einer detaillierteren und präziseren vergleichenden Analyse. Ein anderer Ansatz ist die Verwendung von Sprachmarkup, um zu analysieren, was Menschen tatsächlich sagen und Logik und Argumentation verwenden. Wie das Sprichwort sagt, züchtet eine Lüge eine andere Lüge und schließlich

Die Luft- und Raumfahrtindustrie, ein Pionier der Innovation, nutzt KI, um ihre komplizierten Herausforderungen zu bewältigen. Die zunehmende Komplexität der Modern Aviation erfordert die Automatisierung und Echtzeit-Intelligenzfunktionen von KI für verbesserte Sicherheit, reduzierter Oper

Die schnelle Entwicklung der Robotik hat uns eine faszinierende Fallstudie gebracht. Der N2 -Roboter von Noetix wiegt über 40 Pfund und ist 3 Fuß groß und soll in der Lage sein, sich zurückzufassen. Der G1 -Roboter von Unitree wiegt etwa doppelt so groß wie der N2 und ist etwa 4 Fuß hoch. Es gibt auch viele kleinere humanoide Roboter, die am Wettbewerb teilnehmen, und es gibt sogar einen Roboter, der von einem Fan vorangetrieben wird. Dateninterpretation Der Halbmarathon zog mehr als 12.000 Zuschauer an, aber nur 21 humanoide Roboter nahmen teil. Obwohl die Regierung darauf hinwies, dass die teilnehmenden Roboter vor dem Wettbewerb eine "intensive Ausbildung" durchführten, haben nicht alle Roboter den gesamten Wettbewerb abgeschlossen. Champion - Tiangong ult entwickelt vom Peking Humanoiden Roboter Innovation Center

Künstliche Intelligenz in ihrer aktuellen Form ist nicht wirklich intelligent. Es ist geschickt darin, vorhandene Daten nachzuahmen und zu verfeinern. Wir schaffen keine künstliche Intelligenz, sondern künstliche Schluss

In einem Bericht wurde festgestellt, dass eine aktualisierte Schnittstelle im Code für Google Photos Android Version 7.26 versteckt wurde. Bei jedem Anzeigen eines Fotos werden am unteren Bildschirmrand eine Reihe neu erkannter Vorschaubildesansichten angezeigt. In den neuen Miniaturansichten des Gesichts fehlen Namensschilds. Ich vermute daher, dass Sie einzeln auf sie klicken müssen, um weitere Informationen zu jeder erkannten Person anzuzeigen. Im Moment bietet diese Funktion keine anderen Informationen als diejenigen, die Google Photos in Ihren Bildern gefunden haben. Diese Funktion ist noch nicht verfügbar, daher wissen wir nicht, wie Google sie genau verwendet. Google kann Miniaturansichten verwenden, um mehr Fotos von ausgewählten Personen zu finden, oder kann für andere Zwecke verwendet werden, z. B. für die Bearbeitung der Person. Lassen Sie uns warten und sehen. Wie vorerst

Die Verstärkungsfonetuning hat die KI -Entwicklung erschüttert, indem sie Modelle unterrichten, um sich auf der Grundlage des menschlichen Feedbacks anzupassen. Es mischt beaufsichtigte Lernfundamente mit belohnungsbasierten Updates, um sie sicherer, genauerer und wirklich hilfreicher zu machen

Wissenschaftler haben ausführlich menschliche und einfachere neuronale Netzwerke (wie die in C. elegans) untersucht, um ihre Funktionalität zu verstehen. Es stellt sich jedoch eine entscheidende Frage: Wie passen wir unsere eigenen neuronalen Netze an, um neben neuartigen Ai S effektiv zu arbeiten


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Dreamweaver CS6
Visuelle Webentwicklungstools
