suchen
HeimBackend-EntwicklungPython-TutorialBauen Sie Ihr erstes Lappensystem mit Python und OpenAI auf

Building Your First RAG System with Python and OpenAI

Dieses Tutorial führt Sie durch den Bau eines RAG -Systems (Abruf Augmented Generation) mit Python und OpenAI. RAG verbessert die KI -Antworten, indem relevante Informationen aus Ihren Dokumenten abgerufen werden, bevor eine Antwort generiert wird.

Was werden Sie lernen:

    Erstellen eines Lappensystems von Grund auf neu.
  • Vorbereitung und Verarbeitung von Dokumenten für Rag.
  • unter Verwendung von OpenAI -Einbettungen.
  • Erstellen eines grundlegenden Abrufsystems.
  • in die OpenAI -API integrieren.

Projektstruktur:

<code>rag-project/
│
├── src/
│   ├── __init__.py
│   ├── document_loader.py
│   ├── text_processor.py
│   ├── embeddings_manager.py
│   ├── retrieval_system.py
│   └── rag_system.py
│
├── data/
│   └── documents/
│
├── requirements.txt
├── test.py
├── README.md
└── .env</code>

Schritt 1: Umgebungsaufbau:

    Erstellen Sie eine virtuelle Umgebung:
  1. (unter Windows: python -m venv venv) venvScriptsactivate
  2. Aktivieren Sie es:
  3. source venv/bin/activate
  4. Pakete installieren:
  5. pip install openai python-dotenv numpy pandas
  6. erstellen
  7. : requirements.txt
<code>openai==1.12.0
python-dotenv==1.0.0
numpy==1.24.3
pandas==2.1.0</code>
    konfigurieren
  1. : .env
<code>OPENAI_API_KEY=your_api_key_here</code>

Schritt 2: Dokumentlade (): src/document_loader.py

import os
from typing import List

class DocumentLoader:
    def __init__(self, documents_path: str):
        self.documents_path = documents_path

    def load_documents(self) -> List[str]:
        documents = []
        for filename in os.listdir(self.documents_path):
            if filename.endswith('.txt'):
                with open(os.path.join(self.documents_path, filename), 'r') as file:
                    documents.append(file.read())
        return documents

Schritt 3: Textverarbeitung (): src/text_processor.py

from typing import List

class TextProcessor:
    def __init__(self, chunk_size: int = 1000):
        self.chunk_size = chunk_size

    def split_into_chunks(self, text: str) -> List[str]:
        words = text.split()
        chunks = []
        current_chunk = []
        current_size = 0

        for word in words:
            if current_size + len(word) > self.chunk_size:
                chunks.append(' '.join(current_chunk))
                current_chunk = [word]
                current_size = len(word)
            else:
                current_chunk.append(word)
                current_size += len(word) + 1

        if current_chunk:
            chunks.append(' '.join(current_chunk))

        return chunks

Schritt 4: Einbettungserstellung (): src/embeddings_manager.py

from typing import List
import openai
import numpy as np

class EmbeddingsManager:
    def __init__(self, api_key: str):
        openai.api_key = api_key

    def create_embeddings(self, texts: List[str]) -> List[np.ndarray]:
        embeddings = []
        for text in texts:
            response = openai.embeddings.create(
                model="text-embedding-ada-002",
                input=text
            )
            embeddings.append(np.array(response.data[0].embedding))
        return embeddings

Schritt 5: Abrufsystem (): src/retrieval_system.py

import numpy as np
from typing import List, Tuple

class RetrievalSystem:
    def __init__(self, chunks: List[str], embeddings: List[np.ndarray]):
        self.chunks = chunks
        self.embeddings = embeddings

    def find_similar_chunks(self, query_embedding: np.ndarray, top_k: int = 3) -> List[Tuple[str, float]]:
        similarities = []
        for i, embedding in enumerate(self.embeddings):
            similarity = np.dot(query_embedding, embedding) / (
                np.linalg.norm(query_embedding) * np.linalg.norm(embedding)
            )
            similarities.append((self.chunks[i], similarity))

        return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_k]

Schritt 6: OpenAI -Integration (): src/rag_system.py

import os
from dotenv import load_dotenv
from typing import List
import openai

from .document_loader import DocumentLoader
from .text_processor import TextProcessor
from .embeddings_manager import EmbeddingsManager
from .retrieval_system import RetrievalSystem

class RAGSystem:
    def __init__(self):
        load_dotenv()
        self.api_key = os.getenv('OPENAI_API_KEY')
        self.loader = DocumentLoader('data/documents')
        self.processor = TextProcessor()
        self.embeddings_manager = EmbeddingsManager(self.api_key)

        # Initialize system
        self.initialize_system()

    def initialize_system(self):
        # Load and process documents
        documents = self.loader.load_documents()
        self.chunks = []
        for doc in documents:
            self.chunks.extend(self.processor.split_into_chunks(doc))

        # Create embeddings
        self.embeddings = self.embeddings_manager.create_embeddings(self.chunks)

        # Initialize retrieval system
        self.retrieval_system = RetrievalSystem(self.chunks, self.embeddings)

    def answer_question(self, question: str) -> str:
        # Get question embedding
        question_embedding = self.embeddings_manager.create_embeddings([question])[0]

        # Get relevant chunks
        relevant_chunks = self.retrieval_system.find_similar_chunks(question_embedding)

        # Prepare context
        context = "\n".join([chunk[0] for chunk in relevant_chunks])

        # Create prompt
        prompt = f"""Context: {context}\n\nQuestion: {question}\n\nAnswer:"""

        # Get response from OpenAI
        response = openai.chat.completions.create(
            model="gpt-4-turbo-preview",
            messages=[
                {"role": "system", "content": "You are a helpful assistant. Use the provided context to answer the question."},
                {"role": "user", "content": prompt}
            ]
        )

        return response.choices[0].message.content

Schritt 7: Systemverwendung (): test.py

Probe

Dokumente in .txt platzieren. Dann führen Sie data/documents: test.py aus

# test.py
from src.rag_system import RAGSystem

# Initialize the RAG system
rag = RAGSystem()

# Ask a question
question = "What was the answer to the guardian’s riddle, and how did it help Kai?" #Replace with your question based on your documents
answer = rag.answer_question(question)
print(answer)

Schlussfolgerung:

Dies liefert ein grundlegendes Lappensystem. Zukünftige Verbesserungen könnten erweitertes Chunking, Einbettung von Caching, Fehlerbehebung, raffiniertem Eingabeaufenthalt und Integration der Vektordatenbank sein. Denken Sie daran, Ihren OpenAI -API -Schlüssel sicher zu verwalten und die Nutzung zu überwachen.

Das obige ist der detaillierte Inhalt vonBauen Sie Ihr erstes Lappensystem mit Python und OpenAI auf. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Python und Zeit: Machen Sie das Beste aus Ihrer StudienzeitPython und Zeit: Machen Sie das Beste aus Ihrer StudienzeitApr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python: Spiele, GUIs und mehrPython: Spiele, GUIs und mehrApr 13, 2025 am 12:14 AM

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python vs. C: Anwendungen und Anwendungsfälle verglichenPython vs. C: Anwendungen und Anwendungsfälle verglichenApr 12, 2025 am 12:01 AM

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Der 2-stündige Python-Plan: ein realistischer AnsatzDer 2-stündige Python-Plan: ein realistischer AnsatzApr 11, 2025 am 12:04 AM

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python: Erforschen der primären AnwendungenPython: Erforschen der primären AnwendungenApr 10, 2025 am 09:41 AM

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Wie viel Python können Sie in 2 Stunden lernen?Wie viel Python können Sie in 2 Stunden lernen?Apr 09, 2025 pm 04:33 PM

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden?Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden?Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet?Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet?Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
4 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
4 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
4 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

VSCode Windows 64-Bit-Download

VSCode Windows 64-Bit-Download

Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software