suchen
HeimBackend-EntwicklungPython-TutorialInteroperabilität: Asynchrone Unterstützung für Python-Updates

Seit meinem letzten IoP-Update ist eine Weile vergangen. Lasst uns aufholen!

Interoperability On Python update async support

Der IoP-Befehlszeilenschnittstelle wurden wesentliche Verbesserungen hinzugefügt:

  • Namensänderung: Das Modul grongier.pex wurde in iop umbenannt, um es an das neue Branding des Projekts anzupassen.
  • Asynchrone Unterstützung: IoP unterstützt jetzt vollständig asynchrone Funktionen und Coroutinen.

Projektumbenennung

Das grongier.pex-Modul bleibt aus Gründen der Abwärtskompatibilität zugänglich, wird jedoch in einer zukünftigen Version entfernt. Nutzen Sie das Modul iop für Neuentwicklungen.

Asynchrone Funktionalitäten

Während IoP seit langem asynchrone Aufrufe unterstützt, war die direkte Nutzung asynchroner Funktionen und Coroutinen bisher nicht verfügbar. Bevor wir uns mit dieser neuen Funktion befassen, werfen wir einen Blick auf die Funktionsweise asynchroner Aufrufe in InterSystems IRIS und untersuchen zwei Beispiele.

Alte asynchrone Aufrufe

Dies veranschaulicht den traditionellen Ansatz:

from iop import BusinessProcess
from msg import MyMessage


class MyBP(BusinessProcess):

    def on_message(self, request):
        msg_one = MyMessage(message="Message1")
        msg_two = MyMessage(message="Message2")

        self.send_request_async("Python.MyBO", msg_one, completion_key="1")
        self.send_request_async("Python.MyBO", msg_two, completion_key="2")

    def on_response(self, request, response, call_request, call_response, completion_key):
        if completion_key == "1":
            self.response_one = call_response
        elif completion_key == "2":
            self.response_two = call_response

    def on_complete(self, request, response):
        self.log_info(f"Received response one: {self.response_one.message}")
        self.log_info(f"Received response two: {self.response_two.message}")

Dies spiegelt das asynchrone Anrufverhalten in IRIS wider. send_request_async sendet eine Anfrage an einen Geschäftsbetrieb und on_response verarbeitet die empfangene Antwort. completion_key differenziert Antworten.

Synchronisierte Multi-Request-Funktionalität

Die Möglichkeit, mehrere synchrone Anfragen gleichzeitig zu senden, ist zwar nicht ganz neu, aber bemerkenswert:

from iop import BusinessProcess
from msg import MyMessage


class MyMultiBP(BusinessProcess):

    def on_message(self, request):
        msg_one = MyMessage(message="Message1")
        msg_two = MyMessage(message="Message2")

        tuple_responses = self.send_multi_request_sync([("Python.MyMultiBO", msg_one),
                                                        ("Python.MyMultiBO", msg_two)])

        self.log_info("All requests have been processed")
        for target, request, response, status in tuple_responses:
            self.log_info(f"Received response: {response.message}")

In diesem Beispiel werden zwei Anfragen gleichzeitig an denselben Geschäftsvorgang gesendet. Die Antwort ist ein Tupel, das Ziel, Anfrage, Antwort und Status für jeden Aufruf enthält. Dies ist besonders nützlich, wenn die Reihenfolge der Anfragen unwichtig ist.

Asynchrone Funktionen und Coroutinen

So nutzen Sie asynchrone Funktionen und Coroutinen in IoP:

import asyncio

from iop import BusinessProcess
from msg import MyMessage


class MyAsyncNGBP(BusinessProcess):

    def on_message(self, request):

        results = asyncio.run(self.await_response(request))

        for result in results:
            print(f"Received response: {result.message}")

    async def await_response(self, request):
        msg_one = MyMessage(message="Message1")
        msg_two = MyMessage(message="Message2")

        tasks = [self.send_request_async_ng("Python.MyAsyncNGBO", msg_one),
                 self.send_request_async_ng("Python.MyAsyncNGBO", msg_two)]

        return await asyncio.gather(*tasks)

Dadurch werden mehrere Anfragen gleichzeitig mit send_request_async_ng gesendet. asyncio.gather stellt sicher, dass alle Antworten gleichzeitig erwartet werden.

Wenn Sie bis hierher mitverfolgt haben, kommentieren Sie bitte „Boomerang“! Es würde viel bedeuten. Danke!

await_response ist eine Coroutine, die mehrere Anfragen sendet und auf alle Antworten wartet.

Zu den Vorteilen der Verwendung von asynchronen Funktionen und Coroutinen gehören eine verbesserte Leistung durch parallele Anforderungen, eine verbesserte Lesbarkeit und Wartbarkeit, eine erhöhte Flexibilität durch die Verwendung des asyncio-Moduls sowie eine bessere Ausnahme- und Timeout-Behandlung.

Vergleich asynchroner Methoden

Was sind die Hauptunterschiede zwischen send_request_async, send_multi_request_sync und send_request_async_ng?

  • send_request_async: Sendet nur dann eine Anfrage und wartet auf eine Antwort, wenn on_response implementiert ist und completion_key verwendet wird. Einfach, aber für parallele Anfragen weniger skalierbar.
  • send_multi_request_sync: Sendet mehrere Anfragen gleichzeitig und wartet auf alle Antworten. Einfach zu verwenden, aber die Reihenfolge der Antworten ist nicht garantiert.
  • send_request_async_ng: Sendet mehrere Anfragen gleichzeitig und wartet auf alle Antworten, wobei die Antwortreihenfolge beibehalten wird. Erfordert asynchrone Funktionen und Coroutinen.

Viel Spaß beim Multithreading!

Das obige ist der detaillierte Inhalt vonInteroperabilität: Asynchrone Unterstützung für Python-Updates. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie können Sie Elemente an eine Python -Liste anhängen?Wie können Sie Elemente an eine Python -Liste anhängen?May 04, 2025 am 12:17 AM

ToAppendElementStoapythonList, UsTheAppend () methodForsingleElelements, Extend () FormultipleElements, und INSERSt () FORSPECIFIFICEPosition.1) UseAppend () ForaddingOneElementattheend.2) usextend () toaddmultiElementsefficction.3) useInsert () toaddanelementataspeci

Wie erstellt man eine Python -Liste? Geben Sie ein Beispiel an.Wie erstellt man eine Python -Liste? Geben Sie ein Beispiel an.May 04, 2025 am 12:16 AM

TocreateApythonList, usequarebrackets [] andsparateItemswithcommas.1) ListaredynamicandcanholdmixedDatatypes.2) UseAppend (), REME () und SSLICINGFORMIPLUMILATION.3) LISTCOMPRAUMENS

Diskutieren Sie reale Anwendungsfälle, in denen eine effiziente Speicherung und Verarbeitung numerischer Daten von entscheidender Bedeutung ist.Diskutieren Sie reale Anwendungsfälle, in denen eine effiziente Speicherung und Verarbeitung numerischer Daten von entscheidender Bedeutung ist.May 04, 2025 am 12:11 AM

In den Bereichen Finanzen, wissenschaftliche Forschung, medizinische Versorgung und KI ist es entscheidend, numerische Daten effizient zu speichern und zu verarbeiten. 1) In der Finanzierung kann die Verwendung von Speicherzuordnungsdateien und Numpy -Bibliotheken die Datenverarbeitungsgeschwindigkeit erheblich verbessern. 2) Im Bereich der wissenschaftlichen Forschung sind HDF5 -Dateien für die Datenspeicherung und -abnahme optimiert. 3) In der medizinischen Versorgung verbessern die Datenbankoptimierungstechnologien wie die Indexierung und die Partitionierung die Leistung der Datenabfrage. 4) In AI beschleunigen Daten, die Sharding und das verteilte Training beschleunigen, Modelltraining. Die Systemleistung und Skalierbarkeit können erheblich verbessert werden, indem die richtigen Tools und Technologien ausgewählt und Kompromisse zwischen Speicher- und Verarbeitungsgeschwindigkeiten abgewogen werden.

Wie erstellt man ein Python -Array? Geben Sie ein Beispiel an.Wie erstellt man ein Python -Array? Geben Sie ein Beispiel an.May 04, 2025 am 12:10 AM

PythonarraysSureScreeatedusedhearrayModule, nicht gebaute Inlikelisten.1) ImportThearrayModule.2) Spezifizieren Sie die THETYPECODE, z.

Was sind einige Alternativen zur Verwendung einer Shebang -Linie, um den Python -Dolmetscher anzugeben?Was sind einige Alternativen zur Verwendung einer Shebang -Linie, um den Python -Dolmetscher anzugeben?May 04, 2025 am 12:07 AM

Zusätzlich zur Shebang -Linie gibt es viele Möglichkeiten, einen Python -Interpreter anzugeben: 1. Verwenden Sie Python -Befehle direkt aus der Befehlszeile; 2. Verwenden Sie Stapeldateien oder Shell -Skripte. 3.. Verwenden Sie Build -Tools wie Make oder CMake; 4. Verwenden Sie Aufgabenläufer wie Invoke. Jede Methode hat ihre Vor- und Nachteile, und es ist wichtig, die Methode auszuwählen, die den Anforderungen des Projekts entspricht.

Wie wirkt sich die Auswahl zwischen Listen und Arrays auf die Gesamtleistung einer Python -Anwendung aus, die sich mit großen Datensätzen befasst?Wie wirkt sich die Auswahl zwischen Listen und Arrays auf die Gesamtleistung einer Python -Anwendung aus, die sich mit großen Datensätzen befasst?May 03, 2025 am 12:11 AM

ForHandlinglargedatasetsinpython, Usenumpyarraysforbetterperformance.1) Numpyarraysarememory-Effiction und FasterFornumericaloperations.2) meidenunnötiger Anbieter.3) HebelVectorisationFecedTimeComplexity.4) ManagemememoryusageSageWithEffizienceDeffictureWitheseffizienz

Erklären Sie, wie das Speicher für Listen gegenüber Arrays in Python zugewiesen wird.Erklären Sie, wie das Speicher für Listen gegenüber Arrays in Python zugewiesen wird.May 03, 2025 am 12:10 AM

Inpython, listEUSUutsynamicMemoryAllocationWithover-Accocation, whilenumpyarraysalcodeFixedMemory.1) ListSallocatemoremoryThanneded intellig, vereitelte, dass die sterbliche Größe von Zeitpunkte, OfferingPredictableSageStoageStloseflexeflexibilität.

Wie geben Sie den Datentyp der Elemente in einem Python -Array an?Wie geben Sie den Datentyp der Elemente in einem Python -Array an?May 03, 2025 am 12:06 AM

Inpython, youcansspecthedatatypeyFelemeremodelerernspant.1) Usenpynernrump.1) Usenpynerp.dloatp.Ploatm64, Formor -Präzise -Preciscontrolatatypen.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools

VSCode Windows 64-Bit-Download

VSCode Windows 64-Bit-Download

Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung