Kauf mir einen Kaffee☕
*Memos:
- Mein Beitrag erklärt OxfordIIITPet().
Resize() kann die Größe von null oder mehr Bildern ändern, wie unten gezeigt:
*Memos:
- Das erste Argument für die Initialisierung ist size(Required-Type:int oder tuple/list(int)):
*Memos:
- Es ist [Breite, Höhe].
- Es muss 1
- Ein Tupel/eine Liste muss 1D mit 1 oder 2 Elementen sein.
- Ein einzelner Wert (int oder tuple/list(int`)) wird auf die Kante eines kleineren Bildes in Breite oder Höhe angewendet, dann wird die Größe der anderen Kante mit größerer Breite oder Höhe ebenfalls geändert: *Memos:
- Wenn die Breite eines Bildes kleiner als seine Höhe ist, beträgt es [Größe, Größe * Breite / Höhe].
- Wenn die Breite eines Bildes größer als seine Höhe ist, beträgt es [Größe * Breite / Höhe, Größe].
- Wenn die Breite eines Bildes gleich seiner Höhe ist, ist es [Größe, Größe].
- Das 2. Argument für die Initialisierung ist Interpolation (Optional-Default:InterpolationMode.BILINEAR-Type:InterpolationMode).
- Das dritte Argument für die Initialisierung ist max_size(Optional-Default:None-Type:int):
*Memos:
- Es wird nur unterstützt, wenn size ein einzelner Wert ist (int oder tuple/list(int`)).
- Nachdem die Größe angewendet wurde, wenn die Breiten- oder Höhenkante eines größeren Bildes diese überschreitet, wird sie auf die Breiten- oder Höhenkante eines größeren Bildes angewendet, um die Bildgröße zu begrenzen. Anschließend wird die Breiten- oder Höhenkante des anderen kleineren Bildes ebenfalls kleiner als zuvor.
- Das vierte Argument für die Initialisierung ist Antialias (Optional-Default:True-Type:bool). *Auch wenn „False“ eingestellt ist, ist es immer „True“, wenn die Interpolation InterpolationMode.BILINEAR oder InterpolationMode.BICUBIC ist.
- Das 1. Argument ist img(Required-Type:PIL Image oder tensor(int, float, complex oder bool)):
*Memos:
- Ein Tensor muss der 3D- oder mehr-D-Tensor eines oder mehrerer Elemente sein.
- Verwenden Sie nicht img=.
- Wird empfohlen, V2 gemäß V1 oder V2 zu verwenden? Welches soll ich verwenden?
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import Resize from torchvision.transforms.functional import InterpolationMode resize = Resize(size=100) resize = Resize(size=100, interpolation=InterpolationMode.BILINEAR, max_size=None, antialias=True) resize # Resize(size=[100], # interpolation=InterpolationMode.BILINEAR, # antialias=True) resize.size # [100] resize.interpolation # <interpolationmode.bilinear:> print(resize.max_size) # None resize.antialias # True origin_data = OxfordIIITPet( root="data", transform=None ) p1000_data = OxfordIIITPet( root="data", transform=Resize(size=1000) # transform=Resize(size=[1000]) ) p100_data = OxfordIIITPet( root="data", transform=Resize(size=100) ) p50_data = OxfordIIITPet( root="data", transform=Resize(size=50) ) p10_data = OxfordIIITPet( root="data", transform=Resize(size=10) ) p100p180_data = OxfordIIITPet( root="data", transform=Resize(size=[100, 180]) ) p180p100_data = OxfordIIITPet( root="data", transform=Resize(size=[180, 100]) ) p100ms110_data = OxfordIIITPet( root="data", transform=Resize(size=100, max_size=110) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") show_images1(data=p1000_data, main_title="p1000_data") show_images1(data=p100_data, main_title="p100_data") show_images1(data=p50_data, main_title="p50_data") show_images1(data=p10_data, main_title="p10_data") print() show_images1(data=origin_data, main_title="origin_data") show_images1(data=p100p180_data, main_title="p100p180_data") show_images1(data=p180p100_data, main_title="p180p100_data") print() show_images1(data=p100_data, main_title="p100_data") show_images1(data=p100ms110_data, main_title='p100ms110_data') # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=None, ms=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) if not s: s = im.size resize = Resize(size=s, max_size=ms) # Here plt.imshow(X=resize(im)) # Here plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") show_images2(data=origin_data, main_title="p1000_data", s=1000) show_images2(data=origin_data, main_title="p100_data", s=100) show_images2(data=origin_data, main_title="p50_data", s=50) show_images2(data=origin_data, main_title="p10_data", s=10) print() show_images2(data=origin_data, main_title="origin_data") show_images2(data=origin_data, main_title="p100p180_data", s=[100, 180]) show_images2(data=origin_data, main_title="p180p100_data", s=[180, 100]) print() show_images2(data=origin_data, main_title="p100_data", s=100) show_images2(data=origin_data, main_title="p100ms110_data", s=100, ms=110) </interpolationmode.bilinear:>
Das obige ist der detaillierte Inhalt vonGröße in PyTorch ändern. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Der Artikel erörtert die Rolle virtueller Umgebungen in Python und konzentriert sich auf die Verwaltung von Projektabhängigkeiten und die Vermeidung von Konflikten. Es beschreibt ihre Erstellung, Aktivierung und Vorteile bei der Verbesserung des Projektmanagements und zur Verringerung der Abhängigkeitsprobleme.

Regelmäßige Ausdrücke sind leistungsstarke Tools für Musteranpassung und Textmanipulation in der Programmierung, wodurch die Effizienz bei der Textverarbeitung in verschiedenen Anwendungen verbessert wird.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version