


Verwaltung von Schnittstelleneigenschaften während der JSON-Deserialisierung mit JSON.NET
Der Deserialisierungsprozess von JSON.NET kann beim Auffinden von Schnittstelleneigenschaften problematisch sein. Die direkte Deserialisierung von Objekten, die Schnittstelleneigenschaften enthalten, führt zu einem Fehler, da JSON.NET Schnittstellen nicht direkt instanziieren kann.
Lösung: Konstruktorinjektion für nahtlose Deserialisierung
Eine einfache und effektive Lösung besteht darin, die Konstruktorinjektion zu nutzen. Durch die Einbindung konkreter Klasseninstanzen als Konstruktorparameter in die Klasse, die die Schnittstelle implementiert, kann JSON.NET die entsprechenden konkreten Klassen während der Deserialisierung korrekt identifizieren und verwenden.
Anschauliches Beispiel:
Untersuchen wir eine Klasse mit einer Schnittstelleneigenschaft:
public class Visit : IVisit { public Visit(MyLocation location, Guest guest) { Location = location; Guest = guest; } public long VisitId { get; set; } public ILocation Location { get; set; } public DateTime VisitDate { get; set; } public IGuest Guest { get; set; } }
Dieser konstruktorbasierte Ansatz ermöglicht es JSON.NET, die JSON-Daten genau in die erforderlichen konkreten Klassen zu deserialisieren und so das Problem mit Schnittstelleneigenschaften zu lösen.
Das obige ist der detaillierte Inhalt vonWie kann ich Schnittstelleneigenschaften in JSON.NET fehlerfrei deserialisieren?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

In diesem Artikel werden die C -Standard -Vorlagenbibliothek (STL) erläutert, die sich auf seine Kernkomponenten konzentriert: Container, Iteratoren, Algorithmen und Funktoren. Es wird beschrieben, wie diese interagieren, um die generische Programmierung, die Verbesserung der Codeeffizienz und die Lesbarkeit t zu ermöglichen

Dieser Artikel beschreibt die effiziente Verwendung von STL -Algorithmus in c. Es betont die Auswahl der Datenstruktur (Vektoren vs. Listen), Algorithmus -Komplexitätsanalyse (z. B. std :: sortieren vs. std :: partial_sort), Iteratoranwendungen und parallele Ausführung. Häufige Fallstricke wie

In diesem Artikel wird die effektive Ausnahmebehandlung in C, Covering Try, Catch und Wurp Mechanics, beschrieben. Es betont Best Practices wie Raii, die Vermeidung unnötiger Fangblöcke und die Protokollierung von Ausnahmen für robusten Code. Der Artikel befasst sich auch mit Perf

Artikel erörtert den effektiven Einsatz von RValue -Referenzen in C für Bewegungssemantik, perfekte Weiterleitung und Ressourcenmanagement, wobei Best Practices und Leistungsverbesserungen hervorgehoben werden. (159 Charaktere)

In dem Artikel wird die Verwendung von Move Semantics in C erörtert, um die Leistung zu verbessern, indem unnötiges Kopieren vermieden wird. Es umfasst die Implementierung von Bewegungskonstruktoren und Zuordnungsbetreibern unter Verwendung von STD :: MOVE

C 20 -Bereiche verbessern die Datenmanipulation mit Ausdruckskraft, Komposition und Effizienz. Sie vereinfachen komplexe Transformationen und integrieren sich in vorhandene Codebasen, um eine bessere Leistung und Wartbarkeit zu erhalten.

In dem Artikel wird der dynamische Versand in C, seine Leistungskosten und Optimierungsstrategien erörtert. Es unterstreicht Szenarien, in denen der dynamische Versand die Leistung beeinflusst, und vergleicht sie mit statischer Versand, wobei die Kompromisse zwischen Leistung und Betonung betont werden

C Sprachdatenstruktur: Die Datenrepräsentation des Baumes und des Diagramms ist eine hierarchische Datenstruktur, die aus Knoten besteht. Jeder Knoten enthält ein Datenelement und einen Zeiger auf seine untergeordneten Knoten. Der binäre Baum ist eine besondere Art von Baum. Jeder Knoten hat höchstens zwei Kinderknoten. Die Daten repräsentieren structTreenode {intdata; structTreenode*links; structTreenode*rechts;}; Die Operation erstellt einen Baumtraversalbaum (Vorbereitung, in Ordnung und späterer Reihenfolge) Suchbauminsertion-Knoten Lösches Knotendiagramm ist eine Sammlung von Datenstrukturen, wobei Elemente Scheitelpunkte sind, und sie können durch Kanten mit richtigen oder ungerechten Daten miteinander verbunden werden, die Nachbarn darstellen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.