


In der heutigen Containerwelt ist eine effiziente Bereitstellung von Backend-Anwendungen von entscheidender Bedeutung. FastAPI, ein beliebtes Python-Framework, zeichnet sich durch die Erstellung schneller, leistungsstarker APIs aus. Wir verwenden uv
, einen Paketmanager, um das Abhängigkeitsmanagement zu optimieren.
UV
Angenommen, Sie haben uv
und Docker installiert, erstellen wir unsere App: uv init simple-app
. Dies erzeugt:
<code>simple-app/ ├── .python-version ├── README.md ├── hello.py └── pyproject.toml</code>
pyproject.toml
enthält Projektmetadaten:
[project] name = "simple-app" version = "0.1.0" description = "Add your description here" readme = "README.md" requires-python = ">=3.11" dependencies = []
Projektabhängigkeiten hinzufügen zu pyproject.toml
:
dependencies = [ "fastapi[standard]=0.114.2", "python-multipart=0.0.7", "email-validator=2.1.0", "pydantic>2.0", "SQLAlchemy>2.0", "alembic=1.12.1", ] [tool.uv] dev-dependencies = [ "pytest=7.4.3", "mypy=1.8.0", "ruff=0.2.2", "pre-commit=4.0.0", ]
Der Abschnitt [tool.uv]
definiert Entwicklungsabhängigkeiten, die während der Bereitstellung ausgeschlossen werden. Führen Sie uv sync
zu:
- Erstellen
uv.lock
. - Erstellen Sie eine virtuelle Umgebung (
.venv
).uv
lädt bei Bedarf einen Python-Interpreter herunter. - Abhängigkeiten installieren.
FastAPI
Erstellen Sie die FastAPI-Anwendungsstruktur:
<code>recipe-app/ ├── app/ │ ├── main.py │ ├── __init__.py │ └── ... ├── .python-version ├── README.md └── pyproject.toml</code>
In app/main.py
:
from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class Hello(BaseModel): message: str @app.get("/", response_model=Hello) async def hello() -> Hello: return Hello(message="Hi, I am using FastAPI")
Laufen mit: uv run fastapi dev app/main.py
. Sie erhalten eine Ausgabe ähnlich der folgenden:
Zugriff unter https://www.php.cn/link/c099034308f2a231c24281de338726c1.
Docker
Lassen Sie uns Dockerisieren. Wir entwickeln in Containern. Fügen Sie ein Dockerfile
:
FROM python:3.11-slim ENV PYTHONUNBUFFERED=1 COPY --from=ghcr.io/astral-sh/uv:0.5.11 /uv /uvx /bin/ ENV UV_COMPILE_BYTE=1 ENV UV_LINK_MODE=copy WORKDIR /app ENV PATH="/app/.venv/bin:$PATH" COPY ./pyproject.toml ./uv.lock ./.python-version /app/ RUN --mount=type=cache,target=/root/.cache/uv \ --mount=type=bind,source=uv.lock,target=uv.lock \ --mount=type=bind,source=pyproject.toml,target=pyproject.toml \ uv sync --frozen --no-install-project --no-dev COPY ./app /app/app RUN --mount=type=cache,target=/root/.cache/uv \ uv sync --frozen --no-dev CMD ["fastapi", "dev", "app/main.py", "--host", "0.0.0.0"]
Für eine einfachere Containerverwaltung verwenden Sie docker-compose.yaml
:
services: app: build: context: . dockerfile: Dockerfile working_dir: /app volumes: - ./app:/app/app ports: - "${APP_PORT:-8000}:8000" environment: - DATABASE_URL=${DATABASE_URL} depends_on: - postgres postgres: image: postgres:15 environment: POSTGRES_DB: ${POSTGRES_DB} POSTGRES_USER: ${POSTGRES_USER} POSTGRES_PASSWORD: ${POSTGRES_PASSWORD} volumes: - postgres_data:/var/lib/postgresql/data volumes: postgres_data: {}
Erstellen Sie eine .env
-Datei mit Umgebungsvariablen. Ausführen mit: docker compose up --build
.
[tool.uv]
und Entwicklungstools
Der Abschnitt [tool.uv]
in pyproject.toml
listet Entwicklungstools auf:
- pytest: Test-Framework (hier außerhalb des Geltungsbereichs).
-
mypy: Statischer Typprüfer. Manuell ausführen:
uv run mypy app
. - ruff:Schneller Linter (ersetzt mehrere Werkzeuge).
-
Pre-Commit: Verwaltet Pre-Commit-Hooks. Erstellen Sie
.pre-commit-config.yaml
:
repos: - repo: https://github.com/pre-commit/pre-commit-hooks rev: v4.4.0 hooks: - id: check-added-large-files - id: check-toml - id: check-yaml args: - --unsafe - id: end-of-file-fixer - id: trailing-whitespace - repo: https://github.com/astral-sh/ruff-pre-commit rev: v0.8.6 hooks: - id: ruff args: [--fix] - id: ruff-format
Fügen Sie pyproject.toml
-Konfigurationen für mypy
und ruff
hinzu (Beispiel im Originaltext). Installieren Sie eine VS Code Ruff-Erweiterung für Echtzeit-Linting. Dieses Setup gewährleistet einen konsistenten Codestil, Typprüfung und Pre-Commit-Prüfungen für einen optimierten Arbeitsablauf.
Das obige ist der detaillierte Inhalt vonSkalierbares Python-Backend: Erstellen einer containerisierten FastAPI-Anwendung mit UV, Docker und Pre-Commit: eine Schritt-für-Schritt-Anleitung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Laden Sie Gurkendateien in Python 3.6 Umgebungsbericht Fehler: ModulenotFoundError: Nomodulennamen ...

Wie löste ich das Problem der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse? Wenn wir malerische Spot -Kommentare und -analysen durchführen, verwenden wir häufig das Jieba -Word -Segmentierungstool, um den Text zu verarbeiten ...

Wie benutze ich den regulären Ausdruck, um das erste geschlossene Tag zu entsprechen und anzuhalten? Im Umgang mit HTML oder anderen Markup -Sprachen sind häufig regelmäßige Ausdrücke erforderlich, um ...


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

Dreamweaver Mac
Visuelle Webentwicklungstools

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software