Heim >Backend-Entwicklung >Python-Tutorial >RandomPerspective in PyTorch

RandomPerspective in PyTorch

Linda Hamilton
Linda HamiltonOriginal
2025-01-17 12:10:10588Durchsuche

Kauf mir einen Kaffee☕

*Memos:

  • Mein Beitrag erklärt RandomRotation().
  • Mein Beitrag erklärt RandomAffine().
  • Mein Beitrag erklärt RandomHorizontalFlip().
  • Mein Beitrag erklärt RandomVerticalFlip().
  • Mein Beitrag erklärt OxfordIIITPet().

RandomPerspective() kann eine Perspektivtransformation für null oder mehr Bilder durchführen, wie unten gezeigt:

*Memos:

  • Das erste Argument für die Initialisierung ist verzerrung_skala(Optional-Default:0.5-Type:int oder float): *Memos:
    • Es kann eine Perspektivtransformation bewirken.
    • Es muss 0 <= x <= 1 sein.
  • Das 2. Argument für die Initialisierung ist p(Optional-Default:0.5-Type:int oder float): *Memos:
    • Es ist die Wahrscheinlichkeit, ob jedes Bild mit perspektivischer Transformation erstellt wurde oder nicht.
    • Es muss 0 <= x <= 1 sein.
  • Das dritte Argument für die Initialisierung ist Interpolation (Optional-Default:InterpolationMode.BILINEAR-Type:InterpolationMode).
  • Das 4. Argument für die Initialisierung ist fill(Optional-Default:0-Type:int, float oder tuple/list(int or float)): *Memos:
    • Es kann den Hintergrund von Bildern ändern. *Der Hintergrund ist sichtbar, wenn Sie eine perspektivische Transformation für Bilder durchführen.
    • Ein Tupel/eine Liste muss 1D mit 3 Elementen sein.
  • Es gibt das 1. Argument (Required-Type:PIL Image oder tensor(int)). *Es muss ein 3D-Tensor sein.
  • Wird empfohlen, V2 gemäß V1 oder V2 zu verwenden? Welches soll ich verwenden?
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomPerspective
from torchvision.transforms.functional import InterpolationMode

randompers = RandomPerspective()
randompers = RandomPerspective(distortion_scale=0.5,
                               p=0.5,
                               interpolation=InterpolationMode.BILINEAR,
                               fill=0)
randompers
# RandomPerspective(p=0.5,
#                   distortion_scale=0.5,
#                   interpolation=InterpolationMode.BILINEAR,
#                   fill=0)

randompers.distortion_scale
# 0.5

randompers.p
# 0.5

randompers.interpolation
# 

randompers.fill
# 0

origin_data = OxfordIIITPet(
    root="data",
    transform=None
    # transform=RandomPerspective(distortion_scale=0)
    # transform=RandomPerspective(p=0)
)

dis02p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=0.2, p=1)
)

dis06p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=0.6, p=1)
)

dis1p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=1, p=1)
)

p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(p=1)
)

p05_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(p=0.5)
)

p1fillgray_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(p=1, fill=150)
)

p1fillpurple_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(p=1, fill=[160, 32, 240])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=dis02p1_data, main_title="dis02p1_data")
show_images1(data=dis06p1_data, main_title="dis06p1_data")
show_images1(data=dis1p1_data, main_title="dis1p1_data")
show_images1(data=p1_data, main_title="p1_data")
show_images1(data=p05_data, main_title="p05_data")
show_images1(data=p1fillgray_data, main_title="p1fillgray_data")
show_images1(data=p1fillpurple_data, main_title="p1fillpurple_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, d=0.5, prob=0.5, f=0):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        rp = RandomPerspective(distortion_scale=d, p=prob, fill=f) # Here
        plt.imshow(X=rp(im)) # Here
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data", d=0)
show_images2(data=origin_data, main_title="dis02p1_data", d=0.2, prob=1)
show_images2(data=origin_data, main_title="dis06p1_data", d=0.6, prob=1)
show_images2(data=origin_data, main_title="dis1p1_data", d=1, prob=1)
show_images2(data=origin_data, main_title="p1_data", prob=1)
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
show_images2(data=origin_data, main_title="p1fillgray_data", prob=1, f=150)
show_images2(data=origin_data, main_title="p1fillpurple_data", prob=1,
             f=[160, 32, 240])




Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Das obige ist der detaillierte Inhalt vonRandomPerspective in PyTorch. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn