Try/Catch-Blöcke: Auswirkungen auf die Leistung über die Ausnahmebehandlung hinaus
Die Optimierung von Code für die Leistung erfordert ein gründliches Verständnis dafür, wie sich verschiedene Konstrukte, einschließlich Try/Catch-Blöcken, auf die Ausführungsgeschwindigkeit auswirken, auch wenn Ausnahmen unwahrscheinlich sind. Entgegen allgemeiner Annahmen können Try/Catch-Blöcke zu Leistungseinbußen führen.
Szenario 1: Bereichsübergreifende gemeinsame Nutzung und Optimierung von Variablen
Das Vorhandensein einer Ausnahmebehandlung kann Compiler-Optimierungen behindern, insbesondere wenn auf Variablen über verschiedene Bereiche hinweg zugegriffen wird. Die Möglichkeit der Ausnahmebehandlung innerhalb eines separaten Bereichs kann verhindern, dass der Just-In-Time (JIT)-Compiler bestimmte leistungssteigernde Optimierungen anwendet.
Szenario 2: Benchmarking Try/Catch Overhead
Ein C#-Benchmark, der eine einfache Sinusberechnung innerhalb und ohne Try/Catch-Block verglich, zeigte einen minimalen Leistungsunterschied ohne Ausnahmen. Allerdings führte die Einführung komplexerer Berechnungen innerhalb des Try/Catch-Blocks (wie unten gezeigt) zu einer deutlich längeren Ausführungszeit über mehrere Iterationen hinweg:
try { d = Math.Sin(d); } catch (Exception ex) { Console.WriteLine(ex.ToString()); } finally { d = Math.Sin(d); }
Dies zeigt, dass der Overhead von Try/Catch nicht immer vernachlässigbar ist und mit der Komplexität des Codes innerhalb des Blocks skaliert.
Best Practices
Try/Catch-Blöcke sind zwar entscheidend für eine robuste Fehlerbehandlung, sollten aber mit Bedacht eingesetzt werden. Entwickler sollten die Vorteile der Ausnahmebehandlung sorgfältig gegen die möglichen Leistungseinbußen abwägen, bevor sie sie in ihren Code integrieren. Unnötige Try/Catch-Blöcke können zu einer verringerten Anwendungseffizienz führen.
Das obige ist der detaillierte Inhalt vonBeeinträchtigen Try/Catch-Blöcke die Leistung auch ohne Ausnahmen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Sie können die Bibliotheken TinyXML, PugixML oder LIBXML2 verwenden, um XML -Daten in C. 1) XML -Dateien zu verarbeiten: Verwenden Sie DOM- oder SAX -Methoden, DOM ist für kleine Dateien geeignet und SAX ist für große Dateien geeignet. 2) XML -Datei generieren: Konvertieren Sie die Datenstruktur in das XML -Format und schreiben Sie in die Datei. In diesen Schritten können XML -Daten effektiv verwaltet und manipuliert werden.

Die Arbeit mit XML -Datenstrukturen in C kann die Bibliothek mit TinyXML oder Pugixml verwenden. 1) Verwenden Sie die PugixML -Bibliothek, um XML -Dateien zu analysieren und zu generieren. 2) Behandeln Sie komplexe verschachtelte XML -Elemente wie Buchinformationen. 3) Optimieren Sie den XML -Verarbeitungscode und es wird empfohlen, effiziente Bibliotheken und Streaming -Parsen zu verwenden. In diesen Schritten können XML -Daten effizient verarbeitet werden.

C dominiert immer noch die Leistungsoptimierung, da die Leistungsverwaltung und die effizienten Ausführungsfunktionen auf niedrigem Level für Spielentwicklung, Finanztransaktionssysteme und eingebettete Systeme unverzichtbar machen. Insbesondere manifestiert es sich als: 1) In der Spieleentwicklung machen Cs Memory Management und effiziente Ausführungsfunktionen von C die bevorzugte Sprache für die Entwicklung der Spiele-Engine. 2) In Finanztransaktionssystemen gewährleisten die Leistungsvorteile von C eine extrem geringe Latenz und einen hohen Durchsatz. 3) In eingebetteten Systemen machen Cs niedrigem Speichermanagement und effiziente Ausführungsfunktionen es in ressourcenbeschränkten Umgebungen sehr beliebt.

Die Auswahl des C XML -Frameworks sollte auf Projektanforderungen basieren. 1) TinyXML ist für ressourcenbezogene Umgebungen geeignet, 2) Pugixml ist für Hochleistungsanforderungen geeignet, 3) Xerces-C unterstützt eine komplexe XMLSchema-Überprüfung, Leistung, Benutzerfreundlichkeit und Lizenzen müssen bei der Auswahl berücksichtigt werden.

C# eignet sich für Projekte, die Entwicklungseffizienz und Type -Sicherheit erfordern, während C für Projekte geeignet ist, die eine hohe Leistung und Hardwarekontrolle erfordern. 1) C# bietet Müllsammlung und LINQ, geeignet für Unternehmensanwendungen und Windows -Entwicklung. 2) C ist bekannt für seine hohe Leistung und die zugrunde liegende Kontrolle und wird häufig bei der Programmierung von Spielen und Systemen verwendet.

C -Codeoptimierung kann durch die folgenden Strategien erreicht werden: 1. Verwalten Sie den Speicher für die Optimierung manuell; 2. Schreiben Sie Code, der den Compiler -Optimierungsregeln entspricht; 3. Wählen Sie geeignete Algorithmen und Datenstrukturen aus; 4. Verwenden Sie Inline -Funktionen, um den Call Overhead zu reduzieren. 5. Template Metaprogrammierung anwenden, um zur Kompilierungszeit zu optimieren. 6. Vermeiden Sie unnötiges Kopieren, verwenden Sie bewegliche Semantik- und Referenzparameter. 7. Verwenden Sie const korrekt, um die Compiler -Optimierung zu unterstützen. 8. Wählen Sie geeignete Datenstrukturen wie std :: vector aus.

Das volatile Schlüsselwort in C wird verwendet, um den Compiler darüber zu informieren, dass der Wert der Variablen außerhalb der Codekontrolle geändert werden kann und daher nicht optimiert werden kann. 1) Es wird häufig zum Lesen von Variablen verwendet, die durch Hardware- oder Interrupt -Dienstprogramme wie Sensorstatus geändert werden können. 2) Flüchtige kann Multi-Thread-Sicherheit nicht garantieren und sollte Mutex-Schlösser oder Atomoperationen verwenden. 3) Die Verwendung von volatilen kann zu geringfügigen Leistung führen, um die Programmkorrektheit zu gewährleisten.

Durch die Messung der Thread -Leistung in C kann Timing -Tools, Leistungsanalyse -Tools und benutzerdefinierte Timer in der Standardbibliothek verwendet werden. 1. Verwenden Sie die Bibliothek, um die Ausführungszeit zu messen. 2. Verwenden Sie GPROF für die Leistungsanalyse. Zu den Schritten gehört das Hinzufügen der -PG -Option während der Kompilierung, das Ausführen des Programms, um eine Gmon.out -Datei zu generieren, und das Generieren eines Leistungsberichts. 3. Verwenden Sie das Callgrind -Modul von Valgrind, um eine detailliertere Analyse durchzuführen. Zu den Schritten gehört das Ausführen des Programms zum Generieren der Callgrind.out -Datei und das Anzeigen der Ergebnisse mit KCACHEGRIND. 4. Benutzerdefinierte Timer können die Ausführungszeit eines bestimmten Codesegments flexibel messen. Diese Methoden helfen dabei, die Thread -Leistung vollständig zu verstehen und den Code zu optimieren.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

Dreamweaver Mac
Visuelle Webentwicklungstools

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung
