Der Sammlung doppelter Codes wurde ein neues Mitglied hinzugefügt: Verfolgung der Ausführungszeit von Celery-Aufgaben.
Jede Celery-Aufgabe hat tatsächlich zwei unterschiedliche „Ausführungszeiten“:
- Tatsächliche Ausführungszeit: Die Zeit, die der Code benötigt, um ausgeführt zu werden.
- „Abschlusszeit“: Beinhaltet die Zeit, die in der Warteschlange auf einen verfügbaren Arbeitsprozess gewartet wurde.
Beides ist wichtig, denn unser oberstes Ziel ist es, zu wissen, wann die Aufgabe abgeschlossen ist.
Nachdem wir eine Aufgabe ausgelöst haben, müssen wir wissen, wann die Aufgabe abgeschlossen ist und wann wir mit den Ergebnissen rechnen können. Es ist wie eine Projektschätzung. Was Manager wirklich wissen wollen, ist, wann das Projekt abgeschlossen sein wird, und nicht, dass es in einer Woche abgeschlossen sein wird, aber in den nächsten sechs Monaten niemand Zeit dafür haben wird.
Verwenden Sie Selleriesignale
Wir können Celery-Signale verwenden, um Aufgaben zeitlich zu steuern.
Tipp 1: Alle Parameter von Celery-Signalen sind Schlüsselwortparameter. Das bedeutet, dass wir einfach die Schlüsselwortargumente auflisten können, die uns interessieren, und den Rest in **kwargs
packen können. Das ist ein tolles Design! Alle Signale sollten auf diese Weise erfolgen!
Tipp 2: Wir können die Start- und Endzeit der Ausführung in der Eigenschaft „headers“ des Aufgabenobjekts speichern.
Aufgabenbeitritt
Wenn die Celery-Aufgabe in die Warteschlange gelangt, notieren Sie die aktuelle Uhrzeit:
from celery import signals from dateutil.parser import isoparse from datetime import datetime, timezone @signals.before_task_publish.connect def before_task_publish(*, headers: dict, **kwargs): raw_eta = headers.get("eta") publish_time = isoparse(raw_eta) if raw_eta else datetime.now(tz=timezone.utc) headers["__publish_time"] = publish_time.isoformat()
Aufgabenausführung beginnt
Wenn der Arbeitsprozess die Aufgabe empfängt, notieren Sie die aktuelle Zeit:
from celery import signals from datetime import datetime, timezone @signals.task_prerun.connect def task_prerun(*, task: Task, **kwargs): setattr(task.request, "__prerun_time", datetime.now(tz=timezone.utc).isoformat())
Aufgabenausführung beendet
Wenn die Aufgabe abgeschlossen ist, berechnen Sie die Ausführungszeit und speichern Sie sie irgendwo, z. B. in StatsD oder einem anderen Überwachungstool.
StatsD ist der branchenübliche Technologie-Stack zur Überwachung von Anwendungen und zur Instrumentierung jeglicher Software, um benutzerdefinierte Metriken bereitzustellen.
- Netdata: StatsD-Einführung [1]
from celery import signals, Task from dateutil.parser import isoparse from datetime import datetime, timezone, timedelta def to_milliseconds(td: timedelta) -> int: return int(td.total_seconds() * 1000) @signals.task_postrun.connect def task_postrun(*, task: Task, **kwargs): now = datetime.now(tz=timezone.utc) publish_time = isoparse(getattr(task.request, "__publish_time", "")) prerun_time = isoparse(getattr(task.request, "__prerun_time", "")) exec_time = now - prerun_time if prerun_time else timedelta(0) waiting_time = prerun_time - publish_time if publish_time and prerun_time else timedelta(0) waiting_and_exec_time = now - publish_time if publish_time else timedelta(0) stats = { "exec_time_ms": to_milliseconds(exec_time), "waiting_time_ms": to_milliseconds(waiting_time), "waiting_and_exec_time_ms": to_milliseconds(waiting_and_exec_time), } # TODO: 将统计数据发送到 StatsD 或其他监控工具 statsd.timing(f"celery.task.exec_time_ms", stats["exec_time_ms"], tags=[f"task:{task.name}"]) # ... 发送其他统计数据 ...
Zusätzliche Funktion: Warnung vor langer Ausführungszeit einstellen
Es ist möglich, in der obigen Funktion einen fest codierten Schwellenwert hinzuzufügen:
if exec_time > timedelta(hours=1): logger.error(f"任务 {task.name} 执行时间过长: {exec_time}。请检查!")
Alternativ kann man mehrstufige Schwellenwerte oder Schwellenwerte basierend auf der Aufgabendefinition oder was auch immer im Code ausgedrückt werden kann, festlegen.
Das obige ist der detaillierte Inhalt vonWie messe ich die Ausführungszeit von Celery-Aufgaben?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft