suchen
HeimBackend-EntwicklungPython-TutorialDieses kleine Python-Skript verbessert das Verständnis der Low-Level-Programmierung

This Small Python Script Improved Understanding of Low-Level Programming

Ursprünglich veröffentlicht in Level Up Coding auf Medium.


Die Benutzerfreundlichkeit von Python verdeckt oft die zugrunde liegende Komplexität. Viele Entwickler gewöhnen sich an gängige Bibliotheken und Muster, was zu einem Plateau beim Lernen führt. Fortgeschrittene Themen wie Parallelität und Low-Level-Programmierung bieten jedoch erhebliche Wachstumschancen.

Der Podcast Talk Python To Me ist eine wertvolle Ressource für fortgeschrittenes Python-Lernen. Ihr Kurs „Parallel Programming in Python with async/await and threads“ bietet entscheidende Einblicke in Parallelität und Codeoptimierung.

Traditionelle Informatiklehrpläne behandeln häufig Computerarchitektur, C-Programmierung und Konzepte wie Mutexe, Semaphore und Zeiger. Dennoch kann die praktische Anwendung dieser Konzepte für viele Programmierer schwer zu fassen sein. Beispielsweise bleibt das Verständnis der CPU-Kernauslastung oft theoretisch.

Dieser Kurs stellt die unsync-Bibliothek vor, ein leistungsstarkes Tool zur Vereinfachung der gleichzeitigen und parallelen Programmierung. unsync vereint async, Threading und Multiprocessing in einer einzigen API und optimiert automatisch Aufgaben basierend darauf, ob sie CPU-gebunden, E/A-gebunden oder asynchron sind. Es rationalisiert die gleichzeitige Programmierung, indem es die Komplexität der Thread-Verwaltung bewältigt.

Das folgende Skript veranschaulicht diese Konzepte:

# source: https://github.com/talkpython/async-techniques-python-course/blob/master/src/09-built-on-asyncio/the_unsync/thesync.py

import datetime
import math
import asyncio
import aiohttp
import requests
from unsync import unsync

def main():
    start_time = datetime.datetime.now()

    tasks = [
        compute_some(),
        compute_some(),
        compute_some(),
        download_some(),
        download_some(),
        download_some_more(),
        download_some_more(),
        wait_some(),
        wait_some(),
        wait_some(),
        wait_some(),
    ]

    [t.result() for t in tasks]

    end_time = datetime.datetime.now()
    elapsed_time = end_time - start_time
    print(f"Synchronous version completed in {elapsed_time.total_seconds():,.2f} seconds.")

@unsync(cpu_bound=True)
def compute_some():
    print("Performing computation...")
    for _ in range(1, 10_000_000):
        math.sqrt(25 ** 25 + .01)

@unsync()
async def download_some():
    print("Downloading...")
    url = 'https://talkpython.fm/episodes/show/174/coming-into-python-from-another-industry-part-2'
    async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(ssl=False)) as session:
        async with session.get(url) as resp:
            resp.raise_for_status()
            text = await resp.text()
    print(f"Downloaded (more) {len(text):,} characters.")

@unsync()
def download_some_more():
    print("Downloading more...")
    url = 'https://pythonbytes.fm/episodes/show/92/will-your-python-be-compiled'
    resp = requests.get(url)
    resp.raise_for_status()
    text = resp.text
    print(f"Downloaded {len(text):,} characters.")

@unsync()
async def wait_some():
    print("Waiting...")
    for _ in range(1, 1000):
        await asyncio.sleep(.001)

if __name__ == "__main__":
    main()

Skriptaufschlüsselung

Dieses Skript zeigt die gleichzeitige Aufgabenausführung für eine verbesserte Leistung:

  1. compute_someFunktion: Führt intensive Berechnungen durch und demonstriert die Multithread-CPU-Kernauslastung. Zu den realen Anwendungen gehören wissenschaftliches Rechnen und Datenverarbeitung.
  2. download_someFunktion: Lädt Daten asynchron herunter und nutzt aiohttp für nicht blockierende E/A. Ideal für Web Scraping und gleichzeitige API-Aufrufe.
  3. download_some_moreFunktion:Verwendet synchrone Anforderungen in einem separaten Thread, geeignet für einfachere Szenarien, die Parallelität ohne nicht blockierende E/A erfordern.
  4. wait_someFunktion: Simuliert asynchrone Verzögerungen, sodass andere Aufgaben gleichzeitig ausgeführt werden können. Nützlich für Aufgaben, bei denen auf externe Ereignisse gewartet werden muss.

Wichtige Lernpunkte

Das Skript hebt die Vorteile der gleichzeitigen Programmierung hervor: Die gleichzeitige Ausführung von Aufgaben führt zu einer schnelleren Verarbeitung und einer effizienteren Ressourcennutzung.


Eine effiziente Anwendungsentwicklung erfordert das Verständnis des Zusammenspiels zwischen Speicher (RAM) und Rechenleistung (CPU). RAM ermöglicht schnellen Zugriff auf Daten und ermöglicht reibungsloses Multitasking, während die CPU Anweisungen ausführt. Ausreichender Speicher ist für die Verarbeitung großer Datensätze und mehrerer Vorgänge von entscheidender Bedeutung, während eine leistungsstarke CPU schnelle Berechnungen und reaktionsschnelle Anwendungen gewährleistet. Das Verständnis dieser Beziehung ist für die Optimierung und effiziente Aufgabenverwaltung von entscheidender Bedeutung und führt zu leistungsstarken Anwendungen, die komplexe Aufgaben bewältigen können.


Foto von Alexander Kovalev

Das obige ist der detaillierte Inhalt vonDieses kleine Python-Skript verbessert das Verständnis der Low-Level-Programmierung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Python vs. C: Anwendungen und Anwendungsfälle verglichenPython vs. C: Anwendungen und Anwendungsfälle verglichenApr 12, 2025 am 12:01 AM

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Der 2-stündige Python-Plan: ein realistischer AnsatzDer 2-stündige Python-Plan: ein realistischer AnsatzApr 11, 2025 am 12:04 AM

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python: Erforschen der primären AnwendungenPython: Erforschen der primären AnwendungenApr 10, 2025 am 09:41 AM

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Wie viel Python können Sie in 2 Stunden lernen?Wie viel Python können Sie in 2 Stunden lernen?Apr 09, 2025 pm 04:33 PM

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden?Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden?Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet?Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet?Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Was soll ich tun, wenn das Modul '__builtin__' beim Laden der Gurkendatei in Python 3.6 nicht gefunden wird?Was soll ich tun, wenn das Modul '__builtin__' beim Laden der Gurkendatei in Python 3.6 nicht gefunden wird?Apr 02, 2025 am 07:12 AM

Laden Sie Gurkendateien in Python 3.6 Umgebungsbericht Fehler: ModulenotFoundError: Nomodulennamen ...

Wie verbessert man die Genauigkeit der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse?Wie verbessert man die Genauigkeit der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse?Apr 02, 2025 am 07:09 AM

Wie löste ich das Problem der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse? Wenn wir malerische Spot -Kommentare und -analysen durchführen, verwenden wir häufig das Jieba -Word -Segmentierungstool, um den Text zu verarbeiten ...

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

mPDF

mPDF

mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion