


Von lokal zu global: Die Azure-Migration, die unsere Effizienz und Sicherheit steigerte
Kontext: Die ursprüngliche Systemübersicht
In einem meiner Jobs habe ich an einem robusten Managementsystem gearbeitet, das in Java entwickelt und in RabbitMQ und PostgreSQL integriert wurde, mit der Aufgabe, Zahlungen, Versand und Lagerbestände einer großen E-Commerce-Plattform zu kontrollieren. Das ursprüngliche System, das lokal in einem Rechenzentrum vor Ort betrieben wurde, entsprach nicht mehr den wachsenden Anforderungen an Skalierbarkeit und Zuverlässigkeit. Dieses System stand vor Herausforderungen wie hoher Latenz bei kritischen Transaktionen, Wartungsschwierigkeiten und einem Anstieg der Betriebskosten bei steigender Arbeitslast.
Ziel dieser Migration war nicht nur die Verlagerung des Systems in die Cloud, sondern auch die Verbesserung der Architektur, um es skalierbarer, belastbarer und effizienter zu machen. Die Wahl von Azure als Cloud-Plattform beruhte auf der Fähigkeit, die spezifischen Anforderungen einer modernen, robusten Architektur zu erfüllen und gleichzeitig Best Practices in den Bereichen Sicherheit, Governance und Kostenoptimierung zu unterstützen, wie in Azure Well –Architected Framework beschrieben.
Systemkontext: Das neue Modell in Azure
Überblick
Das neue System ist hoch skalierbar, belastbar und einfach zu verwalten und basiert auf den Prinzipien des Azure Well-Architected Framework. Die Architektur ist darauf ausgelegt, den erhöhten Datenverkehr zu bewältigen, eine hohe Verfügbarkeit sicherzustellen und die Betriebskosten zu senken. Die Migration zu Azure bedeutete nicht nur die Verschiebung vorhandener Komponenten, sondern auch die Überprüfung und Modernisierung der Architektur, um sicherzustellen, dass das System agil, sicher und effizient ist.
Die Architektur wurde in vier Ebenen des C4-Modells geplant, wobei der Schwerpunkt auf einer klaren Sicht auf den Kontext, Container, Komponenten und Code lag. Dies würde sicherstellen, dass alle Beteiligten – vom Ingenieur bis zum Manager – hinsichtlich der Skalierbarkeits- und Zuverlässigkeitsziele des neuen Systems übereinstimmen.
Kontext (Kontextdiagramm)
Das Kontextdiagramm veranschaulicht das Zahlungs-, Fracht- und Lagerverwaltungssystem als Ganzes. Das System interagiert mit verschiedenen externen Komponenten wie Kunden, Zahlungssystemen und Transportplattformen. Dieses Diagramm konzentriert sich darauf, wie Benutzer und externe Systeme mit dem System interagieren.
Das neue System wurde in drei Hauptgeschäftsbereiche unterteilt:
- Zahlungsmanagement: Verarbeitet Finanztransaktionen durch Integration mit Zahlungsgateways und anderen externen Finanzdienstleistungen.
- Frachtmanagement: Interagiert mit Logistikdienstleistern, um den Lieferstatus der Bestellung zu berechnen und zu überwachen.
- Bestandsverwaltung: Überwacht die Lagerbestände und generiert automatische Benachrichtigungen, wenn Artikel knapp werden.
Jeder dieser Bereiche wurde als separater Mikroservice behandelt, was eine unabhängige Skalierbarkeit und eine vereinfachte Verwaltung ermöglicht. Das Kontextdiagramm konzentriert sich auf die Interaktionen zwischen diesen Diensten und externen Plattformen, wie Zahlungssystemen, Versandsystemen und Benutzerdiensten.
Container (Containerdiagramm)
Das Containerdiagramm konzentriert sich auf die wichtigsten Softwarecontainer innerhalb der Architektur. Jeder Dienst wurde in einen separaten Anwendungscontainer umgewandelt und nutzte dabei die Containerisierungsfunktionen von Kubernetes auf Azure. RabbitMQ wurde durch einen Azure Service Bus ersetzt, um die asynchrone Kommunikation zu verbessern, während PostgreSQL auf Azure Database for PostgreSQL migriert wurde, mit Optimierungen, um eine höhere Verfügbarkeit und Skalierbarkeit zu gewährleisten.
Zu den Hauptbehältern gehören:
- Frontend Web (App): Eine Webanwendung, die mit Benutzern interagiert, um Bestellungen, Zahlungen, Versand und Lagerbestand zu verwalten. Diese Anwendung wurde zu Azure App Service verschoben.
- API Gateway: Ein Dienst, der die Weiterleitung von Anfragen an bestimmte Zahlungs-, Versand- und Inventar-Microservices verwaltet. Verwendet Azure API Management zur Verwaltung von Sicherheit, Authentifizierung und Verkehrskontrolle.
- Payment Microservice: Verantwortlich für die Verarbeitung und Validierung von Finanztransaktionen. Es wurde umstrukturiert, um mit Zahlungsgateways zu kommunizieren und Transaktionen sicher durchzuführen. Es wurde auf Azure Kubernetes Service (AKS) gehostet.
- Shipping Microservice: Verantwortlich für die Berechnung der Versandkosten und die Überwachung des Status der Lieferungen. Dieser Dienst kommuniziert über RESTful-APIs mit externen Logistikanbietern und wurde in Containern auf AKS gehostet.
- Inventory Microservice: Verantwortlich für die Bestandskontrolle, die Ausgabe von Warnmeldungen zu niedrigen Lagerbeständen und die Kommunikation mit Vertriebssystemen, um sicherzustellen, dass Produkte für Kunden verfügbar sind. Dieser Service wurde ebenfalls auf AKS verlagert.
- PostgreSQL-Datenbank: Die Datenbank wurde auf Azure Database for PostgreSQL migriert und bietet Hochverfügbarkeit und automatische Sicherung. Die Migration wurde mit Hilfe des Tools Azure Database Migration Service durchgeführt.
- Service Bus (RabbitMQ ersetzt durch Azure Service Bus): Verwaltet asynchrone Nachrichtenwarteschlangen zwischen Microservices und stellt sicher, dass Transaktionen und Geschäftsprozesse auf effiziente und belastbare Weise ablaufen.
Komponente (Komponentendiagramm)
Das Komponentendiagramm konzentriert sich auf die interne Architektur jedes Microservices. Jede Komponente wird als autonome und leicht skalierbare Softwareeinheit dargestellt.
Zahlungs-Microservice
Zu den wichtigsten Komponenten gehören:
- Zahlungsverarbeitungskomponente: Verantwortlich für die Kommunikation mit dem Zahlungsgateway, die Validierung und Verarbeitung von Zahlungen. Verwendet Azure Key Vault, um Anmeldeinformationen und vertrauliche Informationen sicher zu speichern.
- Benachrichtigungskomponente: Sendet Benachrichtigungen an den Kunden und den Administrator über den Zahlungsstatus.
Versand-Microservice
Zu den wichtigsten Komponenten gehören:
- Versandberechnungskomponente: Interagiert mit externen APIs, um die Versandkosten basierend auf Gewicht, Zielort und anderen Variablen zu berechnen. Es wurde angepasst, um Azure Logic Apps zur Integration in Dienste von Drittanbietern zu verwenden.
- Tracking-Komponente: Überwacht den Lieferstatus der Bestellung und aktualisiert Kunden automatisch über Azure Functions.
Inventar-Microservice
Zu den wichtigsten Komponenten gehören:
Bestandskontrollkomponente: Verantwortlich für die Überwachung und Anpassung der Lagerbestände. Lässt sich in Verkaufssysteme integrieren, um sicherzustellen, dass die Produkte nicht ohne eine geplante Wiederauffüllung ausgehen.
Warnungskomponente: Generiert Warnungen für die Verantwortlichen für die Lagerauffüllung, wenn die Lagerbestände das Minimum erreichen.
Code (Codediagramm)
Zahlungs-Microservice:
Versand-Microservice:
Inventar-Microservice:
Fazit: Verbesserungen und Ergebnisse der Migration
Die Systemmigration zu Azure brachte mehrere wesentliche Verbesserungen:
- Skalierbarkeit: Durch die Verwendung von Azure Kubernetes Service (AKS) und Azure App Service konnte jeder Microservice entsprechend der Arbeitslast unabhängig skaliert werden, wodurch sichergestellt wurde, dass das System Verkehrsspitzen problemlos bewältigen konnte.
- Ausfallsicherheit: Durch die Verwendung von Azure Service Bus für asynchrones Messaging und Azure Database for PostgreSQL mit Hochverfügbarkeit wurde sichergestellt, dass das System widerstandsfähiger gegen Ausfälle und Ausfälle war.
- Optimierte Kosten: Die Migration in die Cloud ermöglichte eine Kostenoptimierung durch das Pay-as-you-go-Modell sowie eine Reduzierung der Infrastruktur- und Wartungskosten für physische Server.
- Sicherheit: Die Verwendung von Azure Key Vault für die sichere Speicherung von Anmeldeinformationen und die Implementierung von Sicherheitspraktiken wie Multi-Faktor-Authentifizierung (MFA) und strenge Zugriffskontrolle haben die Gesamtsicherheit des Systems erhöht.
Durch die Verwendung von Best Practices aus dem Azure Well-Architected Framework und der Implementierung des C4-Modells modernisierte die Migration nicht nur die Architektur, sondern sorgte auch für ein zuverlässigeres, skalierbareres und sichereres System.
Das obige ist der detaillierte Inhalt vonVon lokal zu global: Die Azure-Migration, die unsere Effizienz und Sicherheit steigerte. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Die Verschiebung von C/C zu JavaScript erfordert die Anpassung an dynamische Typisierung, Müllsammlung und asynchrone Programmierung. 1) C/C ist eine statisch typisierte Sprache, die eine manuelle Speicherverwaltung erfordert, während JavaScript dynamisch eingegeben und die Müllsammlung automatisch verarbeitet wird. 2) C/C muss in den Maschinencode kompiliert werden, während JavaScript eine interpretierte Sprache ist. 3) JavaScript führt Konzepte wie Verschlüsse, Prototypketten und Versprechen ein, die die Flexibilität und asynchrone Programmierfunktionen verbessern.

Unterschiedliche JavaScript -Motoren haben unterschiedliche Auswirkungen beim Analysieren und Ausführen von JavaScript -Code, da sich die Implementierungsprinzipien und Optimierungsstrategien jeder Engine unterscheiden. 1. Lexikalanalyse: Quellcode in die lexikalische Einheit umwandeln. 2. Grammatikanalyse: Erzeugen Sie einen abstrakten Syntaxbaum. 3. Optimierung und Kompilierung: Generieren Sie den Maschinencode über den JIT -Compiler. 4. Führen Sie aus: Führen Sie den Maschinencode aus. V8 Engine optimiert durch sofortige Kompilierung und versteckte Klasse.

Zu den Anwendungen von JavaScript in der realen Welt gehören die serverseitige Programmierung, die Entwicklung mobiler Anwendungen und das Internet der Dinge. Die serverseitige Programmierung wird über node.js realisiert, die für die hohe gleichzeitige Anfrageverarbeitung geeignet sind. 2. Die Entwicklung der mobilen Anwendungen erfolgt durch reaktnative und unterstützt die plattformübergreifende Bereitstellung. 3.. Wird für die Steuerung von IoT-Geräten über die Johnny-Five-Bibliothek verwendet, geeignet für Hardware-Interaktion.

Ich habe eine funktionale SaaS-Anwendung mit mehreren Mandanten (eine EdTech-App) mit Ihrem täglichen Tech-Tool erstellt und Sie können dasselbe tun. Was ist eine SaaS-Anwendung mit mehreren Mietern? Mit Multi-Tenant-SaaS-Anwendungen können Sie mehrere Kunden aus einem Sing bedienen

Dieser Artikel zeigt die Frontend -Integration mit einem Backend, das durch die Genehmigung gesichert ist und eine funktionale edtech SaaS -Anwendung unter Verwendung von Next.js. erstellt. Die Frontend erfasst Benutzerberechtigungen zur Steuerung der UI-Sichtbarkeit und stellt sicher, dass API-Anfragen die Rollenbasis einhalten

JavaScript ist die Kernsprache der modernen Webentwicklung und wird für seine Vielfalt und Flexibilität häufig verwendet. 1) Front-End-Entwicklung: Erstellen Sie dynamische Webseiten und einseitige Anwendungen durch DOM-Operationen und moderne Rahmenbedingungen (wie React, Vue.js, Angular). 2) Serverseitige Entwicklung: Node.js verwendet ein nicht blockierendes E/A-Modell, um hohe Parallelitäts- und Echtzeitanwendungen zu verarbeiten. 3) Entwicklung von Mobil- und Desktop-Anwendungen: Die plattformübergreifende Entwicklung wird durch reaktnative und elektronen zur Verbesserung der Entwicklungseffizienz realisiert.

Zu den neuesten Trends im JavaScript gehören der Aufstieg von Typenkripten, die Popularität moderner Frameworks und Bibliotheken und die Anwendung der WebAssembly. Zukunftsaussichten umfassen leistungsfähigere Typsysteme, die Entwicklung des serverseitigen JavaScript, die Erweiterung der künstlichen Intelligenz und des maschinellen Lernens sowie das Potenzial von IoT und Edge Computing.

JavaScript ist der Eckpfeiler der modernen Webentwicklung. Zu den Hauptfunktionen gehören eine ereignisorientierte Programmierung, die Erzeugung der dynamischen Inhalte und die asynchrone Programmierung. 1) Ereignisgesteuerte Programmierung ermöglicht es Webseiten, sich dynamisch entsprechend den Benutzeroperationen zu ändern. 2) Die dynamische Inhaltsgenerierung ermöglicht die Anpassung der Seiteninhalte gemäß den Bedingungen. 3) Asynchrone Programmierung stellt sicher, dass die Benutzeroberfläche nicht blockiert ist. JavaScript wird häufig in der Webinteraktion, der einseitigen Anwendung und der serverseitigen Entwicklung verwendet, wodurch die Flexibilität der Benutzererfahrung und die plattformübergreifende Entwicklung erheblich verbessert wird.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

Dreamweaver CS6
Visuelle Webentwicklungstools

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung