Pandas df['column'] = expression
-Syntax: Wird zum Erstellen, Ändern oder Zuweisen von Spalten in Pandas DataFrame (df) verwendet. Lassen Sie uns es Schritt für Schritt aufschlüsseln, von einfach bis fortgeschritten.
Grundlagen
1. Neue Spalte erstellen
-
Wenn eine Spalte im DataFrame nicht vorhanden ist, wird durch Zuweisen eines Werts zu
df['column']
eine neue Spalte erstellt. -
Beispiel:
import pandas as pd df = pd.DataFrame({'A': [1, 2, 3]}) print(df) # 输出: # A # 0 1 # 1 2 # 2 3 # 创建一个新列 'B',所有值都设置为 0 df['B'] = 0 print(df) # 输出: # A B # 0 1 0 # 1 2 0 # 2 3 0
2. Vorhandene Spalten ändern
-
Wenn die Spalte bereits vorhanden ist, ersetzt die Zuweisung ihren Inhalt.
-
Beispiel:
df['B'] = [4, 5, 6] # 替换列 'B' 中的值 print(df) # 输出: # A B # 0 1 4 # 1 2 5 # 2 3 6
Mittelstufe
3. Ausdrucksbasierte Zuordnung
-
Kann Spalten basierend auf Berechnungen oder Transformationen Werte zuweisen.
-
Beispiel:
df['C'] = df['A'] + df['B'] # 创建列 'C' 为 'A' 和 'B' 的和 print(df) # 输出: # A B C # 0 1 4 5 # 1 2 5 7 # 2 3 6 9
4. Bedingte Zuweisung verwenden
-
Sie können die boolesche Indizierung von Pandas für die bedingte Zuweisung verwenden.
-
Beispiel:
df['D'] = df['A'].apply(lambda x: 'Even' if x % 2 == 0 else 'Odd') print(df) # 输出: # A B C D # 0 1 4 5 Odd # 1 2 5 7 Even # 2 3 6 9 Odd
5. Verwenden Sie mehrere Spalten in Ausdrücken
-
Für komplexere Berechnungen können Sie mehrere Spalten in einem Ausdruck verwenden.
-
Beispiel:
df['E'] = (df['A'] + df['B']) * df['C'] print(df) # 输出: # A B C D E # 0 1 4 5 Odd 25 # 1 2 5 7 Even 49 # 2 3 6 9 Odd 81
Erweitertes Kapitel
6. Vektorisierungsvorgang
-
Numerische Zuweisungen können Vektorisierungsoperationen verwenden, um die Leistung zu verbessern.
-
Beispiel:
df['F'] = df['A'] ** 2 + df['B'] ** 2 # 快速向量化计算 print(df) # 输出: # A B C D E F # 0 1 4 5 Odd 25 17 # 1 2 5 7 Even 49 29 # 2 3 6 9 Odd 81 45
7. Verwenden Sie np.where
für bedingte logische Zuweisung
-
Sie können NumPy für die bedingte Zuweisung verwenden.
-
Beispiel:
import numpy as np df['G'] = np.where(df['A'] > 2, 'High', 'Low') print(df) # 输出: # A B C D E F G # 0 1 4 5 Odd 25 17 Low # 1 2 5 7 Even 49 29 Low # 2 3 6 9 Odd 81 45 High
8. Verwenden Sie externe Funktionen, um Werte zuzuweisen
-
Weisen Sie Spalten Werte zu, basierend auf einer benutzerdefinierten Funktion, die auf die Zeile oder Spalte angewendet wird.
-
Beispiel:
def custom_function(row): return row['A'] * row['B'] df['H'] = df.apply(custom_function, axis=1) print(df) # 输出: # A B C D E F G H # 0 1 4 5 Odd 25 17 Low 4 # 1 2 5 7 Even 49 29 Low 10 # 2 3 6 9 Odd 81 45 High 18
9. Kettenbetrieb
-
Mehrere Vorgänge können miteinander verkettet werden, um den Code prägnanter zu gestalten.
-
Beispiel:
df['I'] = df['A'].add(df['B']).mul(df['C']) print(df) # 输出: # A B C D E F G H I # 0 1 4 5 Odd 25 17 Low 4 25 # 1 2 5 7 Even 49 29 Low 10 49 # 2 3 6 9 Odd 81 45 High 18 81
10. Weisen Sie mehrere Spalten gleichzeitig zu
-
Verwenden Sie
assign()
, um mehrere Spalten in einem Aufruf zu erstellen oder zu ändern. -
Beispiel:
df = df.assign( J=df['A'] + df['B'], K=lambda x: x['J'] * 2 ) print(df) # 输出: # A B C D E F G H I J K # 0 1 4 5 Odd 25 17 Low 4 25 5 10 # 1 2 5 7 Even 49 29 Low 10 49 7 14 # 2 3 6 9 Odd 81 45 High 18 81 9 18
Experten
11. Dynamische Spaltenzuweisung
-
Erstellen Sie Spaltennamen dynamisch basierend auf externen Eingaben.
-
Beispiel:
columns_to_add = ['L', 'M'] for col in columns_to_add: df[col] = df['A'] + df['B'] print(df)
12. Externe Datenzuweisung verwenden
-
Weisen Sie Spalten Werte basierend auf einem externen DataFrame oder Wörterbuch zu.
-
Beispiel:
mapping = {1: 'Low', 2: 'Medium', 3: 'High'} df['N'] = df['A'].map(mapping) print(df) # 输出: # A B C D E F G H I J K N # 0 1 4 5 Odd 25 17 Low 4 25 5 10 Low # 1 2 5 7 Even 49 29 Low 10 49 7 14 Medium # 2 3 6 9 Odd 81 45 High 18 81 9 18 High
13. Leistungsoptimierung:
- Beim Zuweisen von Werten bietet die Verwendung der integrierten Funktionen von Pandas (
apply
, vektorisierte Operationen) eine bessere Leistung als Python-Schleifen.
Zusammenfassung
df['column'] = expression
Die Syntax ist das Kernmerkmal von Pandas und hat ein breites Anwendungsspektrum. Es erlaubt:
- Spalten in einem DataFrame hinzufügen, ändern und manipulieren.
- Führen Sie komplexe Berechnungen durch, einschließlich bedingungsbasierter Logik und mehrspaltiger Transformationen.
- Verketten Sie Vorgänge und generieren Sie dynamisch neue Spalten.
Dies macht Pandas zu einer leistungsstarken Datenmanipulations- und Analysebibliothek.
Das obige ist der detaillierte Inhalt vonErklärung der Syntax „df[column] = expression' in Pandas. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Tomgelistsinpython, Youcanusethe-Operator, ExtendMethod, ListCompredesion, Oritertools.chain, jeweils mitSpezifizierungen: 1) Der OperatorissimpleButlessEfficienceforlargelists; 2) Extendismory-Effizienzbutmodifiestheoriginallist;

In Python 3 können zwei Listen mit einer Vielzahl von Methoden verbunden werden: 1) Verwenden Sie den Bediener, der für kleine Listen geeignet ist, jedoch für große Listen ineffizient ist. 2) Verwenden Sie die Erweiterungsmethode, die für große Listen geeignet ist, mit hoher Speicher -Effizienz, jedoch die ursprüngliche Liste. 3) Verwenden Sie * Operator, der für das Zusammenführen mehrerer Listen geeignet ist, ohne die ursprüngliche Liste zu ändern. 4) Verwenden Sie iTertools.chain, das für große Datensätze mit hoher Speicher -Effizienz geeignet ist.

Die Verwendung der join () -Methode ist die effizienteste Möglichkeit, Zeichenfolgen aus Listen in Python zu verbinden. 1) Verwenden Sie die join () -Methode, um effizient und leicht zu lesen. 2) Der Zyklus verwendet die Bediener für große Listen ineffizient. 3) Die Kombination aus Listenverständnis und Join () eignet sich für Szenarien, die Konvertierung erfordern. 4) Die Verringerung () -Methode ist für andere Arten von Reduktionen geeignet, ist jedoch für die String -Verkettung ineffizient. Der vollständige Satz endet.

PythonexexecutionStheProcessOfTransformingPythonCodeIntoexexexecleableInstructions.1) ThePythonvirtualmachine (PVM) Ausführungen

Zu den wichtigsten Merkmalen von Python gehören: 1. Die Syntax ist prägnant und leicht zu verstehen, für Anfänger geeignet; 2. Dynamisches Typsystem, Verbesserung der Entwicklungsgeschwindigkeit; 3. Reiche Standardbibliothek, Unterstützung mehrerer Aufgaben; 4. Starke Gemeinschaft und Ökosystem, die umfassende Unterstützung leisten; 5. Interpretation, geeignet für Skript- und Schnellprototypen; 6. Support für Multi-Paradigma, geeignet für verschiedene Programmierstile.

Python ist eine interpretierte Sprache, enthält aber auch den Zusammenstellungsprozess. 1) Python -Code wird zuerst in Bytecode zusammengestellt. 2) Bytecode wird von Python Virtual Machine interpretiert und ausgeführt. 3) Dieser Hybridmechanismus macht Python sowohl flexibel als auch effizient, aber nicht so schnell wie eine vollständig kompilierte Sprache.

UseaforloopwheniteratoverasequenceOrforaPecificNumberoftimes; UseaWhileloopWencontiningUntilAconDitionisMet.ForloopsardealForknown -Sequencies, während whileloopSuituationen mithungeterminediterationen.

PythonloopscanleadtoErors-ähnliche Finanzeloops, ModificingListsDuringiteration, Off-by-Oneerrors, Zero-Indexingissues und Nestroxinefficiens.toavoidthese: 1) Verwenden Sie


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

Dreamweaver Mac
Visuelle Webentwicklungstools

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools
