Dieser Beitrag demonstriert die Verwendung des MS COCO-Datensatzes mit torchvision.datasets.CocoCaptions
und torchvision.datasets.CocoDetection
. Wir werden das Laden von Daten für Bildunterschriften und Objekterkennungsaufgaben anhand verschiedener Teilmengen des Datensatzes untersuchen.
Die folgenden Beispiele verwenden verschiedene COCO-Annotationsdateien (captions_*.json
, instances_*.json
, person_keypoints_*.json
, stuff_*.json
, panoptic_*.json
, image_info_*.json
) zusammen mit den entsprechenden Bildverzeichnissen (train2017
, val2017
). , test2017
). Beachten Sie, dass CocoDetection
verschiedene Anmerkungstypen verarbeitet, während sich CocoCaptions
hauptsächlich auf Untertitel konzentriert.
CocoCaptions-Beispiel:
In diesem Abschnitt wird gezeigt, wie Sie Untertiteldaten aus train2017
, val2017
und test2017
mit CocoCaptions
laden. Es wird hervorgehoben, dass nur auf die Beschriftungsanmerkungen zugegriffen wird. Versuche, auf Instanz- oder Schlüsselpunktdaten zuzugreifen, führen zu Fehlern.
from torchvision.datasets import CocoCaptions import matplotlib.pyplot as plt # ... (Code to load CocoCaptions datasets as shown in the original post) ... # Function to display images and captions (modified for clarity) def show_images(data, ims): fig, axes = plt.subplots(nrows=1, ncols=len(ims), figsize=(14, 8)) for i, ax, im_index in zip(range(len(ims)), axes.ravel(), ims): image, captions = data[im_index] ax.imshow(image) ax.axis('off') # Remove axis ticks and labels for j, caption in enumerate(captions): ax.text(0, j * 15, f"{j+1}: {caption}", fontsize=8, color='white') #add caption plt.tight_layout() plt.show() ims = [2, 47, 64] #indices for images to display show_images(cap_train2017_data, ims) show_images(cap_val2017_data, ims) show_images(test2017_data, ims) #test2017 only has image info, no captions show_images(testdev2017_data, ims) #test-dev2017 only has image info, no captions
CocoDetection-Beispiel (anschaulich):
Der ursprüngliche Beitrag zeigt Beispiele für das Laden CocoDetection
mit verschiedenen Anmerkungstypen. Denken Sie daran, dass für den Produktionscode eine Fehlerbehandlung erforderlich wäre, um Fälle zu verwalten, in denen Anmerkungen fehlen oder falsch formatiert sind. Das Kernkonzept besteht darin, den Datensatz je nach gewünschter Aufgabe (z. B. Objekterkennung, Schlüsselpunkterkennung, Materialsegmentierung) mithilfe verschiedener Annotationsdateien zu laden. Der Code wäre dem CocoCaptions
-Beispiel sehr ähnlich, würde jedoch CocoDetection
verwenden und entsprechend unterschiedliche Annotationsstrukturen behandeln. Da die Anzeige der Ausgabe extrem langwierig und komplex wäre, wird hier darauf verzichtet.
Diese überarbeitete Antwort bietet eine prägnantere und klarere Erklärung des Codes und seiner Funktionalität, wobei der Schwerpunkt auf den Schlüsselaspekten liegt und mögliche Fehler behoben werden. Es verbessert auch die Bildanzeigefunktion für eine bessere Lesbarkeit.
Das obige ist der detaillierte Inhalt vonCocoCaptions in PyTorch (2). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

Dieses Tutorial baut auf der vorherigen Einführung in die schöne Suppe auf und konzentriert sich auf DOM -Manipulation über die einfache Baumnavigation hinaus. Wir werden effiziente Suchmethoden und -techniken zur Änderung der HTML -Struktur untersuchen. Eine gemeinsame DOM -Suchmethode ist Ex

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.