


Dieser Artikel beschreibt den Aufbau eines lokalen, bidirektionalen, sprachgesteuerten LLM-Servers mit Python, der Transformers-Bibliothek, Qwen2-Audio-7B-Instruct und Bark. Dieses Setup ermöglicht personalisierte Sprachinteraktionen.
Voraussetzungen:
Bevor Sie beginnen, stellen Sie sicher, dass Sie über Python 3.9, PyTorch, Transformers, Accelerate (in einigen Fällen), FFmpeg und pydub (Audioverarbeitung), FastAPI (Webserver), Uvicorn (FastAPI-Server) und Bark (Text-to-Speech) verfügen ), Multipart und SciPy installiert. Installieren Sie FFmpeg mit apt install ffmpeg
(Linux) oder brew install ffmpeg
(macOS). Python-Abhängigkeiten können über pip install torch transformers accelerate pydub fastapi uvicorn bark python-multipart scipy
.
Schritte:
-
Umgebungseinrichtung: Initialisieren Sie Ihre Python-Umgebung und wählen Sie das PyTorch-Gerät aus (CUDA für GPU, andernfalls CPU oder MPS für Apple Silicon, obwohl die MPS-Unterstützung möglicherweise eingeschränkt ist).
import torch device = 'cuda' if torch.cuda.is_available() else 'cpu'
-
Modell laden: Laden Sie das Qwen2-Audio-7B-Instruct-Modell und den Prozessor. Legen Sie für Cloud-GPU-Instanzen (Runpod, Vast) vor dem Herunterladen des Modells die Umgebungsvariablen
HF_HOME
undXDG_CACHE_HOME
auf Ihren Volume-Speicher fest. Erwägen Sie die Verwendung einer schnelleren Inferenz-Engine wie vLLM in der Produktion.from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration model_name = "Qwen/Qwen2-Audio-7B-Instruct" processor = AutoProcessor.from_pretrained(model_name) model = Qwen2AudioForConditionalGeneration.from_pretrained(model_name, device_map="auto").to(device)
-
Bark-Modell wird geladen: Laden Sie das Bark-Text-zu-Sprache-Modell. Es gibt Alternativen, aber proprietäre Optionen können teurer sein.
from bark import SAMPLE_RATE, generate_audio, preload_models preload_models()
Die kombinierte VRAM-Nutzung beträgt ca. 24 GB; Verwenden Sie bei Bedarf ein quantisiertes Qwen-Modell.
-
FastAPI-Server-Setup: Erstellen Sie einen FastAPI-Server mit
/voice
- und/text
-Endpunkten für die Audio- bzw. Texteingabe.from fastapi import FastAPI, UploadFile, Form from fastapi.responses import StreamingResponse import uvicorn app = FastAPI() # ... (API endpoints defined later) ... if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)
-
Audioeingabeverarbeitung: Verwenden Sie FFmpeg und pydub, um eingehende Audiodaten in ein für das Qwen-Modell geeignetes Format zu verarbeiten. Die Funktionen
audiosegment_to_float32_array
undload_audio_as_array
übernehmen diese Konvertierung. -
Qwen-Antwortgenerierung: Die
generate_response
-Funktion nimmt ein Gespräch (einschließlich Audio oder Text) und verwendet das Qwen-Modell, um eine Textantwort zu generieren. Es verarbeitet sowohl Audio- als auch Texteingaben über die Chat-Vorlage des Prozessors. -
Text-zu-Sprache-Konvertierung: Die
text_to_speech
-Funktion verwendet Bark, um den generierten Text in eine WAV-Audiodatei zu konvertieren. -
API-Endpunktintegration: Die Endpunkte
/voice
und/text
werden vervollständigt, um Eingaben zu verarbeiten, eine Antwort mitgenerate_response
zu generieren und die synthetisierte Sprache mittext_to_speech
als StreamingResponse zurückzugeben. -
Testen: Verwenden Sie
curl
, um den Server zu testen:import torch device = 'cuda' if torch.cuda.is_available() else 'cpu'
Vollständiger Code: (Der vollständige Code ist zu lang, um ihn hier aufzunehmen, aber er ist in der ursprünglichen Eingabeaufforderung verfügbar. Die Codeausschnitte oben zeigen die wichtigsten Teile.)
Anwendungen:Dieses Setup kann als Grundlage für Chatbots, Telefonagenten, Automatisierung des Kundensupports und Rechtsassistenten verwendet werden.
Diese überarbeitete Antwort bietet eine strukturiertere und prägnantere Erklärung, die das Verständnis und die Umsetzung erleichtert. Die Codeausschnitte konzentrieren sich mehr auf die entscheidenden Aspekte, wahren aber dennoch die Integrität der Originalinformationen.
Das obige ist der detaillierte Inhalt vonSelbstgemachtes LLM-Hosting mit bidirektionaler Sprachunterstützung unter Verwendung von Python, Transformers, Qwen und Bark. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und C haben signifikante Unterschiede in der Speicherverwaltung und -kontrolle. 1. Python verwendet die automatische Speicherverwaltung, basierend auf der Referenzzählung und der Müllsammlung, um die Arbeit von Programmierern zu vereinfachen. 2.C erfordert eine manuelle Speicherverwaltung und liefert mehr Kontrolle, aber die Komplexität und das Fehlerrisiko. Welche Sprache zu wählen sollte, sollte auf Projektanforderungen und Teamtechnologie -Stack basieren.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Ob die Auswahl von Python oder C von den Projektanforderungen abhängt: 1) Python eignet sich aufgrund seiner prägnanten Syntax und reichhaltigen Bibliotheken für schnelle Entwicklung, Datenwissenschaft und Skripten; 2) C ist für Szenarien geeignet, die aufgrund seiner Zusammenstellung und des manuellen Speichermanagements eine hohe Leistung und die zugrunde liegende Kontrolle erfordern, wie z. B. Systemprogrammierung und Spielentwicklung.

Python wird in Datenwissenschaft und maschinellem Lernen häufig verwendet, wobei hauptsächlich auf seine Einfachheit und ein leistungsstarkes Bibliotheksökosystem beruhen. 1) Pandas wird zur Datenverarbeitung und -analyse verwendet, 2) Numpy liefert effiziente numerische Berechnungen, und 3) Scikit-Learn wird für die Konstruktion und Optimierung des maschinellen Lernens verwendet. Diese Bibliotheken machen Python zu einem idealen Werkzeug für Datenwissenschaft und maschinelles Lernen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

Dreamweaver CS6
Visuelle Webentwicklungstools

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung