Heim >Backend-Entwicklung >Python-Tutorial >CocoDetection in PyTorch (3)

CocoDetection in PyTorch (3)

Mary-Kate Olsen
Mary-Kate OlsenOriginal
2025-01-08 14:13:41711Durchsuche

Kauf mir einen Kaffee☕

*Memos:

  • Mein Beitrag erklärt CocoDetection() mit train2014 mit captions_train2014.json, Instanzen_train2014.json und person_keypoints_train2014.json, val2014 mit captions_val2014.json, Instanzen_val2014.json und person_keypoints_val2014.json und test2017 mit image_info_test2014.json, image_info_test2015.json und image_info_test-dev2015.json.
  • Mein Beitrag erklärt CocoDetection() mit train2017 mit captions_train2017.json, Instanzen_train2017.json und person_keypoints_train2017.json, val2017 mit captions_val2017.json, Instanzen_val2017.json und person_keypoints_val2017.json und test2017 mit image_info_test2017.json und image_info_test-dev2017.json.
  • Mein Beitrag erklärt MS COCO.

CocoDetection() kann den MS COCO-Datensatz wie unten gezeigt verwenden. *Dies gilt für train2017 mit stuff_train2017.json, val2017 mit stuff_val2017.json, stuff_train2017_pixelmaps mit stuff_train2017.json, stuff_val2017_pixelmaps mit stuff_val2017.json, panoptic_train2017 mit panoptic_train2017.json, panoptic_val2017 mit panoptic_val2017.json und unlabeled2017 mit image_info_unlabeled2017.json:

from torchvision.datasets import CocoDetection

stf_train2017_data = CocoDetection(
    root="data/coco/imgs/train2017",
    annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
)

stf_val2017_data = CocoDetection(
    root="data/coco/imgs/val2017",
    annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
)

len(stf_train2017_data), len(stf_val2017_data)
# (118287, 5000)

# pms_stf_train2017_data = CocoDetection(
#     root="data/coco/anns/stuff_trainval2017/stuff_train2017_pixelmaps",
#     annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
# ) # Error

# pms_stf_val2017_data = CocoDetection(
#     root="data/coco/anns/stuff_trainval2017/stuff_val2017_pixelmaps",
#     annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
# ) # Error

# pan_train2017_data = CocoDetection(
#     root="data/coco/anns/panoptic_trainval2017/panoptic_train2017",
#     annFile="data/coco/anns/panoptic_trainval2017/panoptic_train2017.json"
# ) # Error

# pan_val2017_data = CocoDetection(
#     root="data/coco/anns/panoptic_trainval2017/panoptic_val2017",
#     annFile="data/coco/anns/panoptic_trainval2017/panoptic_val2017.json"
# ) # Error

unlabeled2017_data = CocoDetection(
    root="data/coco/imgs/unlabeled2017",
    annFile="data/coco/anns/unlabeled2017/image_info_unlabeled2017.json"
)

len(unlabeled2017_data)
# 123403

stf_train2017_data[2]
# (<PIL.Image.Image image mode=RGB size=640x428>,
#  [{'segmentation': {'counts': 'W2a0S2Q1T7mNmHS1R7mN...0100000000',
#    'size': [428, 640]}, 'area': 112666.0, 'iscrowd': 0, 'image_id': 30, 
#    'bbox': [0.0, 0.0, 640.0, 321.0], 'category_id': 119, 'id': 10000010},
#   {'segmentation': ..., 'category_id': 124, 'id': 10000011},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 10000014}])

stf_train2017_data[47]
# (<PIL.Image.Image image mode=RGB size=640x427>,
#  [{'segmentation': {'counts': '\\j1h0[<a0G2N001O0...00001O0000',
#    'size': [427, 640]}, 'area': 65213.0, 'iscrowd': 0, 'image_id': 294,
#    'bbox': [140.0, 0.0, 500.0, 326.0], 'category_id': 98, 'id': 10000284}, 
#   {'segmentation': ..., 'category_id': 123, 'id': 10000285},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 10000291}])

stf_train2017_data[64]
# (<PIL.Image.Image image mode=RGB size=480x640>,
#  [{'segmentation': {'counts': '0[9e:1O000000O100000...O5mc0F^Zj7',
#    'size': [640, 480]}, 'area': 20503.0, 'iscrowd': 0, 'image_id': 370,
#    'bbox': [0.0, 0.0, 79.0, 316.0], 'category_id': 102, 'id': 10000383},
#   {'segmentation': ..., 'category_id': 105, 'id': 10000384},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 10000389}])

stf_val2017_data[2]
# (<PIL.Image.Image image mode=RGB size=640x483>,
#  [{'segmentation': {'counts': '\9g5]9O1O1O;EU1kNU1...VMKQ?NY`d3',
#    'size': [483, 640]}, 'area': 5104.0, 'iscrowd': 0, 'image_id': 632,
#    'bbox': [0.0, 300.0, 392.0, 183.0], 'category_id': 93, 'id': 20000017},
#   {'segmentation': ..., 'category_id': 128, 'id': 20000018},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 20000020}])

stf_val2017_data[47]
# (<PIL.Image.Image image mode=RGB size=640x480>,
#  [{'segmentation': {'counts': '[da7T1X>D3M2J5M4M4LoQg1',
#    'size': [480, 640]}, 'area': 122.0, 'iscrowd': 0, 'image_id': 5001,
#    'bbox': [515.0, 235.0, 7.0, 36.0], 'category_id': 104, 'id': 20000247},
#   {'segmentation': ..., 'category_id': 105, 'id': 20000248},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 20000256}])

stf_val2017_data[64]
# (<PIL.Image.Image image mode=RGB size=640x483>,
#  [{'segmentation': {'counts': 'U<^1W>N020mN]B2e>N1O...Mb@N^?2hd2',
#    'size': [500, 375]}, 'area': 2404.0, 'iscrowd': 0, 'image_id': 6763,
#    'bbox': [0.0, 235.0, 369.0, 237.0], 'category_id': 105, 'id': 20000356},
#   {'segmentation': ..., 'category_id': 123, 'id': 20000357},
#   ...
#   {'segmentation': ..., 'category_id': 183, 'id': 20000362}])

unlabeled2017_data[2]
# (<PIL.Image.Image image mode=RGB size=640x427>, [])

unlabeled2017_data[47]
# (<PIL.Image.Image image mode=RGB size=428x640>, [])

unlabeled2017_data[64]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])

import matplotlib.pyplot as plt
from matplotlib.patches import Polygon, Rectangle
import numpy as np
from pycocotools import mask

# `show_images1()` doesn't work very well for the images with
# segmentations so for it, use `show_images2()` which
# more uses the original coco functions. 
def show_images1(data, ims, main_title=None):
    file = data.root.split('/')[-1]
    fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8))
    fig.suptitle(t=main_title, y=0.9, fontsize=14)
    for i, axis in zip(ims, axes.ravel()):
        if data[i][1] and "segmentation" in data[i][1][0]:
            im, anns = data[i]
            axis.imshow(X=im)
            axis.set_title(label=anns[0]["image_id"])
            ec = ['g', 'r', 'c', 'm', 'y', 'w']
            ec_index = 0
            for ann in anns:
                seg = ann['segmentation']
                compressed_rld = mask.decode(rleObjs=seg)
                y_plts, x_plts = np.nonzero(a=np.squeeze(a=compressed_rld))
                axis.plot(x_plts, y_plts, alpha=0.4)
                x, y, w, h = ann['bbox']
                rect = Rectangle(xy=(x, y), width=w, height=h,
                                 linewidth=3, edgecolor=ec[ec_index],
                                 facecolor='none', zorder=2)
                ec_index += 1
                if ec_index == len(ec)-1:
                    ec_index = 0
                axis.add_patch(p=rect)
        elif not data[i][1]:
            im, _ = data[i]
            axis.imshow(X=im)
    fig.tight_layout()
    plt.show()

ims = (2, 47, 64)

show_images1(data=stf_train2017_data, ims=ims,
             main_title="stf_train2017_data")
show_images1(data=stf_val2017_data, ims=ims, 
             main_title="stf_val2017_data")
show_images1(data=unlabeled2017_data, ims=ims,
             main_title="unlabeled2017_data")

def show_images2(data, index, main_title=None):
    img_set = data[index]
    img, img_anns = img_set
    if img_anns and "segmentation" in img_anns[0]:
        img_id = img_anns[0]['image_id']
        coco = data.coco
        def show_image(imgIds, areaRng=[],
                       iscrowd=None, draw_bbox=False):
            plt.figure(figsize=(11, 8))
            plt.imshow(X=img)
            plt.suptitle(t=main_title, y=1, fontsize=14)
            plt.title(label=img_id, fontsize=14)
            anns_ids = coco.getAnnIds(imgIds=img_id,
                                      areaRng=areaRng, iscrowd=iscrowd)
            anns = coco.loadAnns(ids=anns_ids)
            coco.showAnns(anns=anns, draw_bbox=draw_bbox)
            plt.show()
        show_image(imgIds=img_id, draw_bbox=True)
        show_image(imgIds=img_id, draw_bbox=False)
        show_image(imgIds=img_id, iscrowd=False, draw_bbox=True)
        show_image(imgIds=img_id, areaRng=[0, 5000], draw_bbox=True)
    elif not img_anns:
        plt.figure(figsize=(11, 8))
        plt.imshow(X=img)
        plt.suptitle(t=main_title, y=1, fontsize=14)
        plt.show()

show_images2(data=stf_val2017_data, index=47, 
             main_title="stf_train2017_data")

show_images1():

Image description

Image description

Image description

show_images2():

Image description

Image description

Image description

Image description

Das obige ist der detaillierte Inhalt vonCocoDetection in PyTorch (3). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn