Übersicht
Im digitalen Zeitalter sind Spam-E-Mails ein ständiges Ärgernis, das die Posteingänge überfüllt und ein Sicherheitsrisiko darstellt. Um dem entgegenzuwirken, können wir künstliche Intelligenz nutzen, um eine Anwendung zur Spam-Erkennung zu erstellen. In diesem Blogbeitrag führen wir Sie durch den Prozess der Bereitstellung einer mit Python und Flask erstellten KI-Spam-Erkennungs-App auf einer AWS EC2-Instanz. Diese Anwendung nutzt maschinelles Lernen, um E-Mails als Spam oder Nicht-Spam zu klassifizieren und bietet so eine praktische Lösung für ein häufiges Problem.
Was Sie lernen werden
- So richten Sie eine AWS EC2-Instanz ein
- So installieren Sie die erforderliche Software und Abhängigkeiten
- So stellen Sie eine Flask-Anwendung mit Gunicorn bereit
- So konfigurieren Sie Sicherheitseinstellungen für Ihre Anwendung
Voraussetzungen
Bevor wir mit dem Bereitstellungsprozess beginnen, stellen Sie sicher, dass Sie über Folgendes verfügen:
- AWS-Konto: Wenn Sie noch keins haben, können Sie ein kostenloses Konto erstellen. Erstellen Sie hier ein AWS-Konto
- Grundkenntnisse über Terminalbefehle: Vertrautheit mit Befehlszeilenschnittstellen ist hilfreich.
Schritt 1: Starten Sie die Ubuntu EC2-Instanz
1) Melden Sie sich bei Ihrer AWS-Managementkonsole an.
2) Navigieren Sie zum EC2-Dashboard.
3) Klicken Sie auf Instanz starten.
4) Wählen Sie ein Ubuntu-Server-AMI (z. B. Ubuntu 20.04 LTS).
5) Wählen Sie einen Instanztyp (z. B. t2.micro für die kostenlose Stufe).
6) Erstellen Sie ein Schlüsselpaar (.pem)
7) Sicherheitsgruppen konfigurieren:
- SSH zulassen (Port 22).
- Fügen Sie eine Regel für HTTP (Port 80) hinzu.
8) Starten Sie die Instanz und stellen Sie eine Verbindung über EC2 Instance Connect her
Schritt 2: Aktualisieren Sie die Instanz
Sobald Sie mit Ihrer EC2-Instanz verbunden sind, empfiehlt es sich, die Paketlisten zu aktualisieren und die installierten Pakete zu aktualisieren:
sudo apt update sudo apt upgrade -y
Schritt 3: Python und Pip installieren
1) Als nächstes müssen wir Python und Pip installieren, die für die Ausführung unserer Flask-Anwendung unerlässlich sind:
sudo apt install python3-pip -y
2) Überprüfen Sie die Installation:
sudo apt update sudo apt upgrade -y
Schritt 4: Einrichten der Flask-App
1) Klonen Sie das Flask-App-Repository: Verwenden Sie Git, um das Repository mit der Spam-Erkennungs-App zu klonen. Ersetzen Sie diese durch die tatsächliche URL Ihres GitHub-Repositorys.
sudo apt install python3-pip -y
2) Navigieren Sie zum Projektordner (ersetzen Sie ihn durch Ihren tatsächlichen Ordnernamen):
python3 --version pip --version
3) Überprüfen Sie die Datei „requirements.txt“: Öffnen Sie die Datei „requirements.txt“, um sicherzustellen, dass sie alle erforderlichen Abhängigkeiten auflistet.
git clone <repository-url> </repository-url>
4) Zeilenenden konvertieren: Wenn Sie Probleme mit der Datei „requirements.txt“ haben (z. B. wenn sie verschlüsselt erscheint), konvertieren Sie sie in Zeilenenden im Unix-Stil:
cd <folder-name> </folder-name>
5) Installieren Sie die Abhängigkeiten:
nano requirements.txt
Schritt 5: Führen Sie die Flask-App aus (Entwicklungsmodus)
Um die Anwendung zu testen, können Sie sie im Entwicklungsmodus ausführen:
file requirements.txt sudo apt install dos2unix -y dos2unix requirements.txt
Standardmäßig wird Flask auf Port 5000 ausgeführt. Sie können überprüfen, ob die App ausgeführt wird, indem Sie in Ihrem Webbrowser zu http://
Schritt 6: Öffnen Sie Port 5000 in der Sicherheitsgruppe
Um den Zugriff auf Ihre App zu ermöglichen, müssen Sie Port 5000 in der Sicherheitsgruppe öffnen:
1) Gehen Sie zum EC2-Dashboard in AWS.
2) Wählen Sie Ihre Instanz aus und navigieren Sie zur Registerkarte „Sicherheit“.
3) Klicken Sie auf den Link Sicherheitsgruppe.
4) Bearbeiten Sie die Eingangsregeln, um TCP-Verkehr auf Port 5000 zuzulassen.
Schritt 7: Einrichten eines produktionsbereiten Servers mit Gunicorn (optional)
Um Ihre App auf einem produktionsbereiten Server auszuführen, können Sie Gunicorn verwenden:
1) Gunicorn installieren:
pip install -r requirements.txt
2) Führen Sie die App mit Gunicorn aus:
python3 app.py
Ersetzen Sie app:app durch Ihren tatsächlichen Modul- und App-Namen, falls abweichend.
Fazit
Wir haben Ihre KI-Spam-Erkennungsanwendung erfolgreich auf AWS EC2 bereitgestellt! Sie können jetzt über Ihre öffentliche EC2-IP darauf zugreifen. Erwägen Sie für weitere Verbesserungen die Implementierung von HTTPS und die Verwendung eines Reverse-Proxys wie Nginx für bessere Leistung und Sicherheit.
Schauen Sie sich hier gerne den Screenshot an, wie die App aussieht
Stellen Sie gerne Fragen oder hinterlassen Sie Ihre Kommentare?
Das obige ist der detaillierte Inhalt vonBereitstellung einer KI-Spam-Erkennungs-App auf AWS EC2. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

Python bietet eine Vielzahl von Möglichkeiten zum Herunterladen von Dateien aus dem Internet, die über HTTP über das Urllib -Paket oder die Anforderungsbibliothek heruntergeladen werden können. In diesem Tutorial wird erläutert, wie Sie diese Bibliotheken verwenden, um Dateien von URLs von Python herunterzuladen. Anfragen Bibliothek Anfragen ist eine der beliebtesten Bibliotheken in Python. Es ermöglicht das Senden von HTTP/1.1 -Anfragen, ohne die URLs oder die Formulierung von Postdaten manuell hinzuzufügen. Die Anforderungsbibliothek kann viele Funktionen ausführen, einschließlich: Formulardaten hinzufügen Fügen Sie mehrteilige Datei hinzu Greifen Sie auf Python -Antwortdaten zu Eine Anfrage stellen Kopf

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

PDF-Dateien sind für ihre plattformübergreifende Kompatibilität beliebt, wobei Inhalte und Layout für Betriebssysteme, Lesegeräte und Software konsistent sind. Im Gegensatz zu Python Processing -Klartextdateien sind PDF -Dateien jedoch binäre Dateien mit komplexeren Strukturen und enthalten Elemente wie Schriftarten, Farben und Bilder. Glücklicherweise ist es nicht schwierig, PDF -Dateien mit Pythons externen Modulen zu verarbeiten. In diesem Artikel wird das PYPDF2 -Modul verwendet, um zu demonstrieren, wie Sie eine PDF -Datei öffnen, eine Seite ausdrucken und Text extrahieren. Die Erstellung und Bearbeitung von PDF -Dateien finden Sie in einem weiteren Tutorial von mir. Vorbereitung Der Kern liegt in der Verwendung von externem Modul PYPDF2. Installieren Sie es zunächst mit PIP: pip ist p

Dieses Tutorial zeigt, wie man Redis Caching nutzt, um die Leistung von Python -Anwendungen zu steigern, insbesondere innerhalb eines Django -Frameworks. Wir werden Redis -Installation, Django -Konfiguration und Leistungsvergleiche abdecken, um den Vorteil hervorzuheben

Die natürliche Sprachverarbeitung (NLP) ist die automatische oder semi-automatische Verarbeitung der menschlichen Sprache. NLP ist eng mit der Linguistik verwandt und hat Verbindungen zur Forschung in kognitiven Wissenschaft, Psychologie, Physiologie und Mathematik. In der Informatik

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

Dreamweaver Mac
Visuelle Webentwicklungstools

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.
